GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The death of dopaminergic and other neurons in primary cultures of the mesencephalon could be induced by treatment with ceramide, as in lymphocytes where it mediates activation by the cytokines tumor necrosis factor-α and interleukin-1β of a novel sphingomyelin-dependent signaling pathway leading to apoptosis. The morphological hallmarks of this form of cell death—bleb formation, cell body shrinkage, nuclear chromatin condensation, and fragmentation—were observed in degenerating neurons. Internucleosomal DNA degradation could also be evidenced by gel electrophoresis. The C2 and C6 analogues as well as native ceramide, administered in a dodecane suspension, had a similar effect, whereas the closely related C2-dihydroceramide, which lacks the 4–5 trans double bond in the sphingosine chain, failed to induce apoptosis. Neuronal death could be delayed by serum factors, dibutyryl cyclic AMP, and the protein synthesis inhibitor cycloheximide.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To enable us to study expression of tyrosine hydroxylase [TH; tyrosine 3-monooxygenase; L-tyrosine tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] as a measure of dopaminergic neuron function in future experiments, methods were developed to quantify TH mRNA levels in cultures of dopaminergic mesencephalic cells. The model of selective dopaminergic toxicity of 1-methyl-4-phenylpyridinium (MPP+) was used to verify the specificity of our methods. Fetal (embryonic day 15) rat ventral mesencephalic cell cultures were treated with 15 μMMPP+ for 48 h, conditions previously shown to reduce the number of TH-immunoreactive neurons, TH activity, and dopamine uptake to 5–10% of control values. This treatment decreased the number of neurons labeled by TH in situ hybridization to 9% of untreated controls and caused a strong reduction of the abundance of TH mRNA in Northern blots. Our findings establish TH mRNA expression as a parameter for future studies of toxic and trophic effects on cultured dopaminergic neurons, and they support the view that MPP+ destroys dopaminergic neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Dibutyryl cyclic AMP (dbcAMP), a permeant analogue of cyclic AMP (cAMP), prevented, for at least 3 weeks, the death of tyrosine hydroxylase (TH)-immunopositive dopaminergic neurons, which occurred spontaneously by apoptosis in mesencephalic cultures. Treatment with the cyclic nucleotide analogue also led to a significant increase in the uptake of [3H]dopamine, attesting that the rescued TH+ neurons were fully functional and differentiated. dbcAMP was most effective when added immediately after plating, but delayed treatment could still arrest the ongoing degenerative process. Trophic/survival effects were long-lasting, declining only progressively after withdrawal of dbcAMP from the culture medium. They were independent of cell density and still detectable in the absence of serum proteins. The effects of dbcAMP were mimicked by depolarizing concentrations of potassium and by agents that increase endogenous production of cAMP, such as forskolin or 3-isobutyl-1-methylxanthine, but not by native cAMP, which cannot cross cell membranes. Elimination of glial cells by arabinoside-C did not reduce the activity of dbcAMP. GABAergic neurons, also present in these cultures, were much less dependent on the cyclic nucleotide analogue for their survival, and serotoninergic cells were not dependent at all. Therefore, cAMP-dependent signaling may be particularly crucial for the maturation and long-term survival of mesencephalic dopaminergic neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 59 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Iron, a transition metal possibly involved in the pathogenesis of Parkinson's disease, was tested for its toxic effects toward cultures of dissociated rat mesencephalic cells. When cultures were switched for 24 h to serum-free conditions, the effective concentrations of ferrous iron (Fe2+) producing a loss of 50% of dopaminergic neurons, as quantified by tyrosine hydroxylase (TH) immunocytochem-istry, TH mRNA in situ hybridization, and measurement of TH activity, were on the order of 200 μM. High-affinity dopamine (DA) uptake, which reflects integrity and function of dopaminergic nerve terminals, was impaired at significantly lower concentrations (EC50= 67 μM). Toxic effects were not restricted to dopaminergic neurons inasmuch as trypan blue dye exclusion index and γ-aminobutyric acid uptake, two parameters used to assess survival of other types of cells present in these cultures, were also affected. Protection against iron cytotoxicity was afforded by desferriox-amine and apotransferrin, two ferric iron-chelating agents. Normal supplementation of the culture medium by serum proteins during treatment was also effective, presumably vianonspecific sequestration. Potential interactions with DA were also investigated. Fe2+ at subtoxic concentrations and desferrioxamine in the absence of exogenous iron added to the cultures failed to potentiate or reduce DA cytotoxicity for mesencephalic cells, respectively. Transferrin, the glyco-protein responsible for intracellular delivery of iron, was ineffective in initiating selective cytotoxic effects toward dopaminergic neurons preloaded with DA. Altogether, these results suggest (a) that ferrous iron is a potent neurotoxin for dopaminergic neurons as well as for other cell types in dissociated mesencephalic cultures, acting likely via autoxida-tion into its ferric form, and (b) that the presence of intra-and extracellular DA is not required for the observed toxic effects.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Bax is a proapoptotic member of the Bcl-2 family of proteins. It is believed to exert its action primarily by facilitating the release of cytochrome c from the mitochondrial intermembrane space into the cytosol, leading to caspase activation and cell death. Because alterations in mitochondrial respiratory function, caspase activation and cell death with morphologic features compatible with apoptosis have been observed post mortem in the brain of patients with Parkinson's disease, we tried to clarify the potential role of Bax in this process in an immunohistochemical study on normal and Parkinson's disease post-mortem brain and primary mesencephalic cell cultures treated with MPP+. We found that Bax is expressed ubiquitously by dopaminergic (DA) neurons in post-mortem brain of normal and Parkinson's disease subjects as well as in vitro. Using an antibody to Bax inserted into the outer mitochondrial membrane as an index of Bax activation, no significant differences were observed between control and Parkinson's disease subjects, regardless of the mesencephalic subregion analysed. However, in Parkinson's disease subjects, the percentage of Bax-positive melanized SNpc neurons containing Lewy bodies, suggestive of DA neuronal suffering, was significantly higher than the overall percentage of Bax-positive neurons among melanized neurons. Furthermore, all melanized SNpc neurons in Parkinson's disease subjects with activated caspase-3 were also immunoreactive for Bax, suggesting that Bax anchored in the outer mitochondrial membrane of melanized SNpc neurons showing signs of neuronal suffering or apoptosis is increased compared with DA neurons that are apparently unaltered. Surprisingly, MPP+ treatment of tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures did not cause redistribution of Bax, although cytochrome c was released from the mitochondria and nuclear condensation/fragmentation was induced. Taken together, these findings suggest that in the human pathology, Bax may be a cofactor in caspase activation, but our in vitro data fail to indicate a central role for Bax in apoptotic death of DA neurons in an experimental Parkinson's disease paradigm.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 72 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The purinergic nucleoside adenosine effectively prevented the death of dopaminergic neurons that occurs spontaneously and progressively in cultures of rat mesencephalon. Adenosine also significantly increased dopamine uptake, attesting to the state of differentiation and functional integrity of the neurons that were rescued. The effects of adenosine were (a) specific to the dopaminergic neurons in these cultures, (b) long-lived, (c) still observed when the treatment was delayed after plating, (d) potentiated by inhibition of adenosine deaminase, and (e) abolished when this enzyme was added in excess to the culture medium. The action of adenosine was mimicked by 5′-(N-ethylcarboxamido)adenosine and dibutyryl-cyclic AMP, but not by CGS-21680, suggesting the possible involvement of A2B subtype purinergic receptors. ATP was also neuroprotective, but its action resulted principally from conversion to adenosine by ectonucleotidases. Several anticancer drugs, including cytosine arabinoside, have been shown previously to prevent apoptosis in cultured dopaminergic neurons by a mechanism that requires the inhibition of proliferating astrocytes. In the presence of adenosine, astrocytes were more differentiated, and their proliferation rate was significantly reduced, suggesting that the neurotrophic effect of the adenine nucleoside resulted also from the repression of the astroglial cells. We did not find evidence of a trophic intermediary in adenosine-treated cultures, however, leading to the hypothesis that limitation of astrocyte replication in itself and/or ensuing changes in the glial phenotype were crucial. Our results suggest that molecules that modulate adenine nucleotide/nucleoside release may be useful for the treatment of chronic neurodegenerative conditions affecting dopaminergic neurons, such as Parkinson's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Nanomolar concentrations of cytosine arabinoside (ara-C), a structural analogue of 2′-deoxycytidine (2′dC) used in the chemotherapy of cancer, proved to be highly effective in preventing the death of postmitotic dopaminergic neurons that occurs spontaneously by apoptosis in mesencephalic cultures. The rescued cells were totally functional and highly differentiated. The trophic/neuroprotective effects of ara-C were (1) specific for dopaminergic neurons; (2) long-lived, remaining detectable several days after withdrawal of the nucleoside analogue from the culture medium; (3) still observed when the treatment was delayed after plating; (4) abolished by an excess of 2′dC or dCTP, or by exposure to the neurotoxin 1-methyl-4-phenylpyridinium; and (5) mimicked by ara-CTP, 5-fluoro-2′-deoxyuridine, and aphidicolin. Autoradiographic studies revealed that ara-C was incorporated exclusively into astrocyte nuclei, suggesting that the dopaminotrophic activity was indirect and resulted from the antiproliferative action of the modified nucleoside on glial cells at concentrations that were not neurotoxic. No evidence was found for putative deleterious or trophic molecules secreted by proliferating or ara-C-treated astrocytes, respectively, suggesting that neuroglial contact may play a role. Our results suggest a possible mechanism underlying neurodegeneration in Parkinson's disease, where selective loss of dopaminergic neurons in the mesencephalon is accompanied by astrogliosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20–50 mm). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca2+ influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca2+ levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca2+ overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Activation of the apoptogenic sphingomyelin-dependent signaling pathway in neuronally differentiated PC12 cells with cell-permeant C2-ceramide resulted in a transient and short-lived emission of reactive oxygen species that was maximal 6 h after the beginning of treatment, followed immediately by nuclear translocation of the transcription factor nuclear factor κB. The production of reactive oxygen species was necessary for cell death to occur. The origin of the reactive oxygen species was identified as complex I of the mitochondrial electron transport chain. The mitochondria were not dysfunctional, however. They maintained normal membrane potentials and ATP synthesis until the cells began to die and the cell nuclei to condense and to fragment, ∼12 h after the beginning of treatment. We conclude that a mitochondrial free radical signal plays a role in the sphingomyelin-dependent transduction pathway. Convergent data from postmortem brain suggest that this signaling pathway may be activated in the dopaminergic neurons that die in patients with Parkinson's disease and would provide a mechanism for oxidative stress implicating the mitochondria, both of which have long been hypothesized to play a role in the pathogenesis of this disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...