GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    ISSN: 1573-6822
    Keywords: artificial organ ; bioartificial liver ; porcine hepatocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A hybrid bioartificial liver device supporting a large mass of cells expressing differentiated hepatocyte metabolic capabilities is necessary for the successful treatment of fulminant hepatic failure. The three-compartment gel-entrapment porcine hepatocyte bioartificial liver was designed to provide "bridge" support to transplantation or until native liver recovery is achieved for patients with acute liver failure. The device is an automated mammalian cell culture system supporting 6-7 × 109 porcine hepatocytes entrapped in a collagen matrix and inoculated into the capillary lumen spaces of two 100 kDa molecular mass cut-off hollow fiber bioreactors. Gel contraction recreates a small lumen space within the hollow fiber which allows for the delivery of a nutrient medium. This configuration supported hepatocyte viability and differentiated phenotype as measured by albumin synthesis, ureagenesis, oxygen consumption, and vital dye staining during both cell culture and ex vivo application. The hollow fiber membrane was also shown to isolate the cells from xenogenic immunoglobulin attack. The gel-entrapment bioartificial liver maintained a large mass of functional hepatocytes by providing a three-dimensional cell culture matrix, by delivering basal nutrients through lumen media perfusion, and by preventing rejection of the xenocytes. These features make this device a favorable candidate for the treatment of clinical fulminant hepatic failure.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...