GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Stress proteins play an important role in virulence, yet little is known about the regulation of stress response in pathogens. In the facultative intracellular pathogen Listeria monocytogenes, the Clp ATPases, including ClpC, ClpP and ClpE, are required for stress survival and intracellular growth. The first gene of the clpC operon of L. monocytogenes encodes a homologue of the Bacillus subtilis CtsR repressor of stress response genes. An L. monocytogenes ctsR-deleted mutant displayed enhanced survival under stress conditions (growth in the presence of 2% NaCl or at 42°C), but its level of virulence in the mouse was not affected. The virulence of a wild-type strain constitutively expressing CtsR is significantly attenuated, presumably because of repression of the stress response. Regulation of the L. monocytogenes clpC, clpP and clpE genes was investigated using transcriptional fusions in B. subtilis as a host. The L. monocytogenes ctsR gene was placed under the control of an inducible promoter, and regulation by CtsR and heat shock was demonstrated in vivo in B. subtilis. The purified CtsR protein of L. monocytogenes binds specifically to the clpC, clpP and clpE regulatory regions, and the extent of the CtsR binding sites was defined by DNase I footprinting. Our results demonstrate that this human pathogen possesses a CtsR regulon controlling class III heat shock genes, strikingly similar to that of the saprophyte B. subtilis. This is the first description of a stress response regulatory gene in a pathogen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 38 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: CtsR (class three stress gene repressor) negatively regulates the expression of class III heat shock genes (clpP, clpE and the clpC operon) by binding to a directly repeated heptanucleotide operator sequence (A/GGTCAAA NAN A/GGTCAAA). CtsR-dependent genes are expressed at a low level at 37°C and are strongly induced under heat shock conditions. We performed a structure/function analysis of the CtsR protein, which is highly conserved among low G+C Gram-positive bacteria. Random chemical mutagenesis, in vitro cross-linking, in vivo co-expression of wild-type and mutant forms of CtsR and the construction of chimeric proteins with the DNA-binding domain of the λ CI repressor allowed us to identify three different functional domains within CtsR: a helix-turn-helix DNA-binding domain, a dimerization domain and a putative heat-sensing domain. We provide evidence suggesting that CtsR is active as a dimer. Transcriptional analysis of a clpP′–bgaB fusion and/or Western blotting experiments using antibodies directed against the CtsR protein indicate that ClpP and ClpX are involved in CtsR degradation at 37°C. This in turn leads to a low steady-state level of CtsR within the cell, as CtsR negatively autoregulates its own synthesis. This is the first example of degradation of a repressor of stress response genes by the Clp ATP-dependent protease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Bacillus subtilis clpP gene, encoding the proteolytic component of the Clp or Ti protease, was cloned and sequenced. The amount of clpP-specific mRNA increased after heat shock, salt and ethanol stress, as well as after treatment with puromycin. Two transcriptional start sites upstream of the clpP structural gene were identified, preceded by sequences resembling the consensus sequences of promoters recognized by σA andσB transcriptional factors of the B. subtilis RNA polymerase respectively. Transcription initiation occurred predominantly at the putative σA-dependent promoter in exponentially growing cells and was induced under stress conditions. After exposure to stress, initiation of transcription also increased at the σB-dependent promoter, but to a lesser extent, indicating that clpP belongs to a double promoter-controlled subgroup of class III general stress genes in B. subtilis. In a sigB mutant strain, clpP remained heat and stress inducible at the σA-dependent promoter. BgaB–reporter gene fusions, carrying either the σA- or the σB-dependent promoter, showed a higher bgaB induction at the σA-dependent promoter, whereas a significantly lower level of induction was measured at the σB-dependent promoter. The σA-dependent promoter appeared to be crucial for the heat-inducible transcription of clpP. A CIRCE (controlling inverted repeat of chaperone expression) element, the characteristic regulation target of class I heat shock genes such as dnaK and groESL, was not found between the transcriptional and translational start sites. Mutants lacking either the proteolytic component ClpP or the regulatory ATPase component ClpX were phenotypically distinct from the wild type. Both mutants produced chains of elongated cells and exhibited severely impaired growth under stress conditions and starvation. Comparison of two-dimensional protein gels from wild-type cells with those from clpP and clpX mutant cells revealed several changes in the protein pattern. Several proteins, such as GroEL, PpiB, PykA, SucD, YhfP, YqkF, YugJ and YvyD, which were found preferentially in higher amounts in both clpP and clpX mutants, might be potential substrates for the ClpXP protease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The nucleotide sequence of the Bacillus subtilis clpP gene was determined. The predicted protein shows very high similarity to members of the ClpP family of proteolytic subunits (68% amino acid sequence identity with that of Escherichia coli ). We show that ClpP plays an essential role in stationary phase adaptive responses. Indeed, a ΔclpP mutant was constructed and shown to display a pleiotropic phenotype, including a deficiency in both sporulation initiation and competence for DNA uptake. The ΔclpP mutant has a highly filamentous morphology and appears to be non-motile, as judged by swarm plate assays. Expression of clpP is strongly induced under heat shock conditions, and ClpP is shown to be essential for growth of B. subtilis at high temperature. The role of ClpP in the sporulation and competence regulatory pathways was investigated. ClpP is required for expression of the spoIIA and spoIIG operons, encoding the σF andσE sporulation-specific sigma factors. ClpP is also necessary for the expression of the comK gene, encoding a positive transcriptional regulator of competence genes. ComK-dependent transcription of sacB, encoding the exocellular degradative enzyme levansucrase, was found to be abolished in the ΔclpP mutant. MecA has been characterized previously as a negative regulator of comK expression, whose overproduction inhibits both sporulation and competence development. Expression of a mecA′–′lacZ translational fusion is shown to be increased in the ΔclpP mutant. We suggest that ClpP is involved in controlling MecA levels in the cell through proteolysis. Increased levels of MecA in the absence of ClpP are at least partly responsible for the observed pleiotropic phenotype of the ΔclpP mutant.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 32 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Clp ATPases, which include the ubiquitous HSP100 family, are classified according to their structural features and sequence similarities. During the course of the Bacillus subtilis genome sequencing project, we identified a gene encoding a new member of the HSP100 family. We designated this protein ClpE, as it is the prototype of a novel subfamily among the Clp ATPases, and have identified homologues in several bacteria, including Listeria monocytogenes, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus pneumoniae, Lactobacillus sakei and Clostridium acetobutylicum. A unique feature of these Hsp100-type Clp ATPases is their amino-terminal zinc finger motif. Unlike the other class III genes of B. subtilis (clpC and clpP ), clpE does not appear to be required for stress tolerance. Transcriptional analysis revealed two σA-type promoters, expression from which was shown to be inducible by heat shock and puromycin treatment. Investigation of the regulatory mechanism controlling clpE expression indicates that this gene is controlled by CtsR and is thus a member of the class III heat shock genes of B. subtilis. CtsR negatively regulates clpE expression by binding to the promoter region, in which five CtsR binding sites were identified through DNase I footprinting and sequence analysis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: clpP and clpC of Bacillus subtilis encode subunits of the Clp ATP-dependent protease and are required for stress survival, including growth at high temperature. They play essential roles in stationary phase adaptive responses such as the competence and sporulation developmental pathways, and belong to the so-called class III group of heat shock genes, whose mode of regulation is unknown and whose expression is induced by heat shock or general stress conditions. The product of ctsR, the first gene of the clpC operon, has now been shown to act as a repressor of both clpP and clpC, as well as clpE, which encodes a novel member of the Hsp100 Clp ATPase family. The CtsR protein was purified and shown to bind specifically to the promoter regions of all three clp genes. Random mutagenesis, DNaseI footprinting and DNA sequence deletions and comparisons were used to define a consensus CtsR recognition sequence as a directly repeated heptad upstream from the three clp genes. This target sequence was also found upstream from clp and other heat shock genes of several Gram-positive bacteria, including Listeria monocytogenes, Streptococcus salivarius, S. pneumoniae, S. pyogenes, S. thermophilus, Enterococcus faecalis, Staphylococcus aureus, Leuconostoc oenos, Lactobacillus sake, Lactococcus lactis and Clostridium acetobutylicum. CtsR homologues were also identified in several of these bacteria, indicating that heat shock regulation by CtsR is highly conserved in Gram-positive bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 20 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: clpC ofBacillus subtilis is part of an operon containing six genes. Northern blot analysis suggested that all genes are co-transcribed and encode stress-inducible proteins. Two promoters (PA and PB) were mapped upstream of the first gene. PA resembles promoters recognized by the vegetative RNA polymerase EσA. The other promoter (PB) was shown to be dependent on σB, the general stress σ factor in B. subtilis, suggesting that clpC, a potential chaperone, is expressed in a σB-dependent manner. This is the first evidence that σB in B, subtilis is involved in controlling the expression of a gene whose counterpart, clpB, is subject to regulation by σ32 in Escherichia coli, indicating a new function of σB-dependent general stress proteins. PB deviated from the consensus sequence of σB promoters and was only slightly induced by starvation conditions. Nevertheless, strong induction by heat, ethanol, and salt stress occurred at the σB-dependent promoter, whereas the vegetative promoter was only weakly induced under these conditions. However, in a sigB mutant, the σA-like promoter became inducible by heat and ethanol stress, completely compensating for sigB deficiency. Only the downstream σA-like promoter was induced by certain stress conditions such as hydrogen peroxide or puromycin. These results suggest that novel stress-induction mechanisms are acting at a vegetative promoter. Involvement of additional elements in this mode of induction are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enterococcus faecium clinical isolate BM4524, resistant to vancomycin and susceptible to teicoplanin, harboured a chromosomal vanB cluster, including the vanS B / vanR B two-component system regulatory genes. Enterococcus faecium strain BM4525, isolated two weeks later from the same patient, was resistant to high levels of both glycopeptides. The ddl gene of BM4525 had a 2 bp insertion leading to an impaired d -alanine: d -alanine ligase. Sequencing of the vanB operon in BM4525 also revealed an 18 bp deletion in the vanS B gene designated vanS BΔ . The resulting six amino acid deletion partially overlapped the G2 ATP-binding domain of the VanS BΔ histidine kinase leading to constitutive expression of the resistance genes. Sequence analysis indicated that the deletion occurred between two tandemly arranged heptanucleotide direct repeats, separated by 11 base-pairs. The VanS B , VanS BΔ and VanR B proteins were overproduced in Escherichia coli and purified. In vitro autophosphorylation of the VanS B and VanS BΔ histidine kinases and phosphotransfer to the VanR B response regulator did not differ significantly. However, VanS BΔ was deficient in VanR B phosphatase activity leading to accumulation of phosphorylated VanR B . Increased glycopeptide resistance in E. faecium BM4525 was therefore a result of the lack of production of d -alanyl- d -alanine ending pentapeptide and to constitutive synthesis of d -alanyl- d -lactate terminating peptidoglycan precursors, following loss of d -alanine: d -alanine ligase and of VanS B phosphatase activity respectively. We suggest that the heptanucleotide direct repeat in vanS B may favour the appearance of high level constitutively expressed vancomycin resistance through a ‘slippage’ type of genetic rearrangement in VanB-type strains.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes , 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...