GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Bottom‐current related sediments have been commonly used for paleoceanographic reconstructions. However, the strength and variability of bottom currents are poorly understood and thus the processes that control sedimentation in deep environments are not clear. In this study, we focus on the Drake Passage, which is connected to the Antarctic Circumpolar Current, that has a major impact on the global climate. We studied the intensity and variability of bottom currents and how they are related to sedimentary processes. For this purpose, we used 27‐years from GLORYS12 Mercator Ocean reanalysis at high resolution to evaluate the bottom current dynamics. Geophysical data and surface grain size measurements were used to identify the type of sediment deposits. Our results show that the dynamics of bottom currents is disconnected from the sea surface dynamics, and bottom circulation is strongly controlled by the rough topography of the Drake Passage. The patterns for the first modes of bottom‐current variability are related to the local topography and seem to generally control the distribution of contourites. The second and third EOF modes show patterns in the bottom currents that differ from the mean field, and they may affect the rate of erosion and deposition differently. Time series of bottom currents reveals multiple high‐speed current events, but contourite drifts seem to accumulate preferentially in zones of slow and stable bottom currents. Our study highlights the potential of using ocean reanalysis to better constrain bottom currents in zones of scarce data and to plan future campaigns of direct measurements.〈/p〉
    Description: Plain Language Summary: As a result of its unique geography, the Southern Ocean contains the largest ocean current in the world ocean, the Antarctic Circumpolar Current (ACC). The Drake Passage (DP) is the major geographic constriction for the ACC and exerts a strong control on the exchange of physical, chemical, and biological properties between the ocean basins. Yet, the bottom dynamics and the relation with sedimentary processes remain to be studied. We analyzed the currents flowing near the seafloor using a high resolution (1°/12°) reanalysis and compared the bottom dynamics with the characteristics of the seafloor sediments obtained using geophysical data sets and sediment cores. We found that the complex topography of the DP plays an essential role in bottom‐current dynamics and that the circulation pattern near the seabed is often different from the sea surface circulation. The largest sediment deposits are located in the zones with weakest bottom current activity.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉The variability of bottom currents in the Drake Passage is described using the ocean reanalysis GLORYS12〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Bottom currents are strongly controlled by the topography and are often disconnected from the surface circulation〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Sedimentary processes are dominated by the influence of local topography and bottom currents〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: https://doi.org/10.48670/moi-00021
    Description: https://doi.org/10.17882/59800
    Description: https://doi.org/10.1594/PANGAEA.864950
    Description: https://doi.org/10.1594/PANGAEA.864807
    Description: https://doi.org/10.1594/PANGAEA.862944
    Description: https://doi.pangaea.de/10.1594/PANGAEA.907140
    Description: https://doi.org/10.1038/s41597-022-01366-7
    Description: http://www.eoas.ubc.ca/7Erich/map.html
    Description: https://odv.awi.de/
    Keywords: ddc:551.46 ; Drake Passage ; bottom currents ; sedimentary features ; Southern Ocean ; bathymetry
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-29
    Description: The aim of this study is to better understand the oceanographic processes at the origin of contourite features. The samples were collected during four cruises onboard the R/V METEOR: M23-2 in 1993, M29-2 in 1994, M46-3 in 2000 and M49-2 in 2001. The measurements were performed to complement previous analyses and therefore, not all cores from these cruises have been measured. Grain size analyses were performed on bulk sediment samples with a Beckman Coulter Laser LS 13 320 at MARUM laboratories using Sodium hexametaphosphate as a dispersant.
    Keywords: 1; 12; 13; 15; 16; 2; 3; 4; 5; 6; 7; 8; Argentine Basin; Argentine Continental Margin; Argentine Continental Slope; Atlantic Ocean; Beckman Coulter Laser diffraction particle size analyzer LS 13 320; Brazil Basin; Center for Marine Environmental Sciences; contourite; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Elevation of event; Event label; GeoB2110-1; GeoB2110-3; GeoB2111-1; GeoB2111-2; GeoB2112-1; GeoB2112-3; GeoB2814-2; GeoB2814-3; GeoB2815-3; GeoB2830-2; GeoB6318-1; GeoB6319-1; GeoB6319-2; GeoB6321-2; GeoB6322-1; GeoB6322-2; GeoB6323-2; GeoB6324-2; GeoB6325-1; GeoB6327-1; GeoB6328-1; GeoB6329-1; GeoB6335-1; GeoB6335-2; GeoB6801-1; GeoB6802-1; GeoB6803-1; GeoB6804-1; GeoB6805-1; GeoB6806-1; GeoB6807-1; GeoB6808-1; GeoB6812-1; GeoB6813-1; GeoB6815-1; GeoB6816-1; grain size distribution; Gravity corer (Kiel type); Latitude of event; Longitude of event; M23/2; M29/2; M46/3; M49/2; MARUM; Meteor (1986); MUC; MultiCorer; Santos Plateau; Size fraction 0.044-0.04 µm; Size fraction 0.048-0.044 µm; Size fraction 0.053-0.048 µm; Size fraction 0.058-0.053 µm; Size fraction 0.064-0.058 µm; Size fraction 0.07-0.064 µm; Size fraction 0.077-0.07 µm; Size fraction 0.084-0.077 µm; Size fraction 0.093-0.084 µm; Size fraction 0.102-0.093 µm; Size fraction 0.112-0.102 µm; Size fraction 0.123-0.112 µm; Size fraction 0.134-0.123 µm; Size fraction 0.148-0.134 µm; Size fraction 0.162-0.148 µm; Size fraction 0.178-0.162 µm; Size fraction 0.195-0.178 µm; Size fraction 0.214-0.195 µm; Size fraction 0.235-0.214 µm; Size fraction 0.258-0.235 µm; Size fraction 0.284-0.258 µm; Size fraction 0.311-0.284 µm; Size fraction 0.342-0.311 µm; Size fraction 0.375-0.342 µm; Size fraction 0.412-0.375 µm; Size fraction 0.452-0.412 µm; Size fraction 0.496-0.452 µm; Size fraction 0.545-0.496 µm; Size fraction 0.598-0.545 µm; Size fraction 0.657-0.598 µm; Size fraction 0.721-0.657 µm; Size fraction 0.791-0.721 µm; Size fraction 0.869-0.791 µm; Size fraction 0.953-0.869 µm; Size fraction 1.047-0.954 µm; Size fraction 1.149-1.047 µm; Size fraction 1.261-1.149 µm; Size fraction 1.385-1.261 µm; Size fraction 1.520-1.385 µm; Size fraction 1.669-1.520 µm; Size fraction 1.832-1.669 µm; Size fraction 10.78-9.819 µm; Size fraction 101.1-92.1 µm; Size fraction 1041-948.3 µm; Size fraction 11.83-10.78 µm; Size fraction 111-101.1 µm; Size fraction 1143-1041 µm; Size fraction 12.99-11.83 µm; Size fraction 121.8-111 µm; Size fraction 1255-1143 µm; Size fraction 133.7-121.8 µm; Size fraction 1377-1255 µm; Size fraction 14.26-12.99 µm; Size fraction 146.8-133.7 µm; Size fraction 15.65-14.26 µm; Size fraction 1512-1377 µm; Size fraction 161.2-146.8 µm; Size fraction 1660-1512 µm; Size fraction 17.18-15.65 µm; Size fraction 176.9-161.2 µm; Size fraction 18.86-17.18 µm; Size fraction 1822-1660 µm; Size fraction 194.2-176.9 µm; Size fraction 2.000-1.822 mm; Size fraction 2.010-1.832 µm; Size fraction 2.208-2.011 µm; Size fraction 2.423-2.208 µm; Size fraction 2.66-2.423 µm; Size fraction 2.92-2.66 µm; Size fraction 20.70-18.86 µm; Size fraction 213.2-194.2 µm; Size fraction 22.73-20.70 µm; Size fraction 234.1-213.2 µm; Size fraction 24.95-22.73 µm; Size fraction 256.9-234.1 µm; Size fraction 27.38-24.95 µm; Size fraction 282.1-256.9 µm; Size fraction 3.206-2.920 µm; Size fraction 3.519-3.206 µm; Size fraction 3.862-3.519 µm; Size fraction 30.07-27.38 µm; Size fraction 309.6-282.1 µm; Size fraction 33.01-30.07 µm; Size fraction 339.9-309.6 µm; Size fraction 36.24-33.01 µm; Size fraction 373.1-339.9 µm; Size fraction 39.77-36.24 µm; Size fraction 4.241-3.862 µm; Size fraction 4.656-4.241 µm; Size fraction 409.6-373.1 µm; Size fraction 43.67-39.78 µm; Size fraction 449.7-409.6 µm; Size fraction 47.94-43.67 µm; Size fraction 493.6-449.7 µm; Size fraction 5.111-4.656 µm; Size fraction 5.611-5.111 µm; Size fraction 52.63-47.94 µm; Size fraction 541.9-493.6 µm; Size fraction 57.77-52.63 µm; Size fraction 594.9-541.9 µm; Size fraction 6.159-5.611 µm; Size fraction 6.761-6.159 µm; Size fraction 63.42-57.77 µm; Size fraction 653.0-594.9 µm; Size fraction 69.62-63.42 µm; Size fraction 7.421-6.761 µm; Size fraction 716.9-653.0 µm; Size fraction 76.43-69.62 µm; Size fraction 786.9-716.9 µm; Size fraction 8.148-7.422 µm; Size fraction 8.944-8.147 µm; Size fraction 83.90-76.43 µm; Size fraction 863.9-786.9 µm; Size fraction 9.819-8.944 µm; Size fraction 92.1-83.9 µm; Size fraction 948.2-863.9 µm; SL; surface sediments
    Type: Dataset
    Format: text/tab-separated-values, 4248 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...