GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    facet.materialart.
    Unknown
    Volante, S. ; Collins, W. J. ; Blereau, E. ; [et al.]
    Springer Berlin Heidelberg
    Publication Date: 2023-06-23
    Description: Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated.
    Description: Centre of Excellence for Core to Crust Fluid Systems, Australian Research Council http://dx.doi.org/10.13039/100012537
    Description: Ruhr-Universität Bochum (1007)
    Keywords: ddc:549 ; Zircon and monazite thermometry ; Water content ; Granitic melts ; Complete crustal section ; Phase equilibria diagrams
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 86 (1931), S. 439-445 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-17
    Description: The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37% for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44% for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anticorrelation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-15
    Description: Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-15
    Description: The tectonic regimes that drove the 1560–1490 Ma granitic magmatism c. 50 m.yr. after the final assembly of the Proterozoic supercontinent Nuna in NE Australia remain elusive. Collision between NE Australia (Mount Isa Inlier—MTI) and NW Laurentia (Georgetown Inlier—GTI) occurred at c. 1600 Ma and was associated with a west-dipping subduction zone, with the MTI as the upper plate and the GTI as the lower plate. Structural studies in the GTI showed that the collisional event involved 1600 Ma WNW-ESE shortening, followed by 1550 Ma WNW-ESE directed extension. During this later stage, a crustal-scale, west-dipping detachment fault-system juxtaposed middle- to lower-crustal levels, associated with voluminous, 1550 Ma S-type granites against greenschist facies upper crustal rocks. Regionally, post-collisional magmatism defines a westward, chemical, and temporal trend from 1560 to 1550 Ma, dominantly S-type confined to the lower plate (GTI) through c. 1545–1540 Ma I-/A-type (below the Carpenteria Basin) to 1540–1490 Ma A-type granites that intruded further west the Australian upper plate (eastern MTI). This transition from hydrous (S-type) granites in the east to drier (A-type) granites in the west is also supported by increasing zircon saturation temperatures and geochemical discriminators. Recent zircon Lu–Hf and new in-situ monazite Sm–Nd analyses in granites show increasingly radiogenic initial (at the time of crystallization) isotopic ratios from the GTI to the MTI, reflecting a concomitant westward increase in mantle input. Combined, these features suggest a spatio–temporal evolution of hotter and drier crustal conditions westward associated with progressive lithospheric extension. Classical Phanerozoic upper-plate delamination, slab break-off, and slab rollback and/or tearing tectonic models do not account for all the features of this post-collisional magmatic record. Alternatively, a hybrid tectonic scenario between fast–hard Indian and slow–soft Aegean collision better explains the attributes of Mesoproterozoic NE Australia during Nuna assembly.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-18
    Description: In this study, we examine whether the interhemispheric symmetry observed in broadband shortwave albedos also applies to the hemispheric-mean visible and near-infrared albedos. While several recent exploratory studies have examined this question using climate models, we explore this question using direct observations of the visible and near-infrared albedos collected by Nimbus-7, the last satellite with a near-infrared broadband radiometer. We find that the hemispheric-mean spectral partitioning of albedo is consistently and statistically significantly different between the two hemispheres. Consistent with prior studies, the origin of these differences is due to interhemispheric differences in cloud cover. Over oceans, the regional daily-mean differences between visible and near-IR albedos are closely correlated with cloud amount. The relative differences are maximized for clear-sky conditions and minimized for overcast conditions. Background: The shortwave albedo is a weighted sum of visible and near-infrared albedos. Under condensate-free conditions, the interactions of solar insolation in these bands with the atmosphere and surface are quite different. To an excellent approximation, the condensate-free atmosphere is a conservative Rayleigh-scattering medium in the visible. Solar radiation not reflected back to space is, to leading order, transmitted to the surface. In the near-infrared, the interactions of sunlight with the atmosphere are dominated by absorption. The solar radiation reaching the surface has therefore been reduced both by reflection to space and by absorption in the atmosphere. Hence, the relative partitioning of net TOA insolation between the visible and near-infrared bands will affect the relative partitioning between atmospheric absorption and transmission to the surface.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 25 (1953), S. 365-380 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Granitic magmas migrated through Early Proterozoic middle–lower crust at Mt Hay, central Australia, via a diverse network of narrow structurally controlled channelways, during a period of progressive W–SW-directed thrusting (D1a–D1d). They utilized existing folds, boudins and shear zones, or created new channels by magmatic fracture either parallel to layering or, rarely, in irregular arrays. The magmas rose obliquely, parallel to the plunging (50–60°) regional elongation direction, which was defined by coaxial folds, boudin necks and a strong mineral-elongation lineation. Megacrystic charnockitic magmas migrated through metre-scale conduits during D1a–D1b, but leucosomes were generally restricted to smaller (centimetre-scale) structures that existed throughout the entire deformation history. Thus, D1a/D1b leucosomes were potential feeders of in situ partial melts to the adjacent larger conduits of charnockite magma, thereby providing a pervasive interconnected network that allowed efficient migration of all magma types during the early stages of thrusting.The upper–middle crust of the Anmatjira–Reynolds Range area contains abundant megacrystic granitoid sheets that are of similar age and geochemistry to those at Mt Hay. They are considered to have formed as syntectonic intrusions emplaced during W–SW-directed thrusting, as at Mt Hay, suggesting that granitic magmas formed near the base of the continental crust passed through the mid-lower crustal level (25–30 km) exposed at Mt Hay and accumulated, in batholithic proportions, at shallower crustal levels (12–20 km) such as the Anmatjira–Reynolds Range area.The observations imply that granitoid magmas in the deep crust are capable of pervasive migration through the crust during major compressive, noncoaxial shear deformation. Localization of magmas by sequentially developed, narrow, compressive structures suggests that dilatancy followed successive foliation-forming events, a situation that can occur during steady-state deformation if the effective confining pressures are low, which would be a result of high and possibly variable rates of magma influx. The inferred rapid melt segregation and migration during deformation suggest that large chambers do not form until magma reaches neutral buoyancy in the middle to upper continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Cooma Complex of the Lachlan Fold Belt, south-eastern Australia, is characterised by a large (c. 10 km wide) low-P, high-T metamorphic aureole surrounding a small (3 × 6 km) granite pluton. The aureole extends northward to envelop the eastern lobe of the Murrumbidgee Batholith and progressively narrows to a kilometre wide hornfelsic aureole some 50 km north of Cooma. At its northern extremity, the batholith has intruded its own volcanic cover. These regional relations suggest that the Murrumbidgee Batholith is gently tilted to the north, with the Cooma Complex representing the aureole beneath the batholith.Two main deformation events, D3 and D5, affected the aureole. The inner, high-grade migmatitic domain contains upright F5 folds defined by a composite, transposed S3/S0 fabric and S3/S0 concordant leucosomes. The folded stromatic migmatites define the western limb of a F5 synform, with its axis located in the batholith. Lenses and sheets of the Murrumbidgee Batholith intruded along S3 but also preserve S3 as a strong, solid-state foliation. S3 and the granite sheets but are also folded by F5, outlining a fanning positive flower structure. These relations indicate that most of the batholith was emplaced before and during D3, but intrusion persisted until early syn-D5.Formation of the Cooma Granodiorite occurred post-D3 to early syn-D5, after formation of the wide metamorphic aureole during early syn-D3 to early syn-D5. The Murrumbidgee Batholith was emplaced between pre-D3 to early syn-D5, synchronous with the formation of the Cooma Complex. The structural and metamorphic relations indicate that the Murrumbidgee Batholith was the ultimate heat source responsible for the Cooma Metamorphic Complex.D3 structures and metamorphic isograds are subparallel to the batholith margin for over 50 km. This concordance probably extends vertically, suggesting that the isograds also fan outward from the batholith margin. This implies an inverted metamorphic sequence focused on the Murrumbidgee Batholith, although the base has been almost completely removed by erosion in the Cooma Complex. The field evidence at Cooma, combined with previous thermal modelling results, suggest that extensive LPHT metamorphic terranes may represent regional metamorphic aureoles developed beneath high-level granitic batholiths.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 8 (1990), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Anmatjira Range and adjacent Reynolds Range, central Australia, comprise early Proterozoic metasediments and othogneisses that were affected by three, and possibly four, temporally distinct metamorphic events, M1–4, and deformation events, D1–4, in the period 1820–1590 Ma. The north-western portion of the range, around Mt Stafford, preserves the effects of ±1820 Ma M1-D1, and shows a spectacular lateral transition from muscovite + quartz-bearing schists to interlayered andalusite-bearing migmatites and two-pyroxene granofelses that reflect extremely low-pressure granulite facies conditions, over a distance of less than 10 km. Orthopyroxene + cordierite + garnet + K-feldspar + quartz-bearing gneisses occur at the highest grade, implying peak conditions of ±750°C and 2.5 ± 0.6 kbar. An anticlockwise P–T path for M1 is inferred from syn- to late-D1 sillimanite overprinting andalusite, petrogenetic grid considerations and quantitative estimates of metamorphic conditions for inferred overprinting assemblages. The effects of M1 have been variably overprinted to the south-east by a c. 1760 Ma M2–D2 event. Much of the central Anmatjira Range, around Ingellina Gap, comprises orthogneiss, deformed during D2, and metapelites that have M1 andalusite and K-feldspar overprinted by M2 sillimanite and muscovite. The south-eastern portion of the range, around Mt Weldon, comprises metasediments and orthogneisses that were completely recrystallized during M2–D2, with metapelitic gneisses characterized by spinel + sillimanite + K-feldspar + quartz-bearing assemblages that suggest peak M2 conditions of 〉750°C and 5.5 ± 1 kbar. Overprinting parageneses in metapelitic gneisses imply that D2 occurred during essentially isobaric cooling. A third granulite facies event, M3, affected rocks in the Reynolds Range, immediately to the south of the Anmatjira Range, at c. 1730 Ma. A possible fourth event, M4, with a minimum age of c. 1590 My affected both Ranges, but resulted in only minor overprinting of M1–3 assemblages. The superimposed effects of M1–4, mapped for the entire Anmatjira–Reynolds Range area, indicate that only minor or no dislocation of the regional geology occurred during any of the metamorphic and accompanying folding, events. Although the immediate cause of each of the metamorphic events involved advection, the ultimate causes were external to the metasediments and most probably external to the crust.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...