GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 11
    Publication Date: 2020-12-14
    Description: This study investigates the usage of HyMAP airborne hyperspectral and Sentinel-2, ASTER and Landsat-8 OLI spaceborne multispectral data for detailed mapping of mineral resources in the Arctic. The EnMAP Geological Mapper (EnGeoMAP) and Iterative Spectral Mixture Analysis (ISMA) approaches are tested for mapping of mafic-ultramafic rocks in areas covered by abundant lichen. Using the Structural Similarity Index Measure (SSIM), the output classification results from airborne data are quantitatively compared to the available geological map and to the HyMAP reference data in case of using spaceborne dataset. Results demonstrate the capability of both airborne and spaceborne data to provide large-scale reconnaissance mapping of geologic materials over vast arctic regions where field access is limited. The distributions of three ultramafic units (dunite, peridotite, pyroxenite) and one mafic unit (gabbro) are mapped based on analyzing specific visible and near-infrared and short-wave-infrared spectral features. The extent of peridotite and dunite units mapped using both approaches is consistent with geological map, whereas pyroxenite abundance maps show different patterns in their distribution as compared to the geological map. The results suggest that EnGeoMAP method has a better performance than ISMA method for mapping the dunite unit, whilst ISMA performs better for mapping peridotite and pyroxenite rocks.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Geophysical Research AbstractsVol. 16, EGU2014-6725-1, 2014
    Publication Date: 2021-02-26
    Description: With the upcoming launch of the next generation of hyperspectral satellites that will routinely deliver high spectral resolution images for the entire globe (e.g. EnMAP, HISUI, HyspIRI, HypXIM, PRISMA), an increasing demand for the availability/accessibility of hyperspectral soil products is coming from the geoscience community. Indeed, many robust methods for the prediction of soil properties based on imaging spectroscopy already exist and have been successfully used for a wide range of soil mapping airborne applications. Nevertheless, these methods require expert know-how and fine-tuning, which makes them used sparingly. More developments are needed toward easy-to-access soil toolboxes as a major step toward the operational use of hyperspectral soil products for Earth's surface processes monitoring and modelling, to allow non-experienced users to obtain new information based on non-expensive software packages where repeatability of the results is an important prerequisite. In this frame, based on the EU-FP7 EUFAR (European Facility for Airborne Research) project and EnMAP satellite science program, higher performing soil algorithms were developed at the GFZ German Research Center for Geosciences as demonstrators for end-to-end processing chains with harmonized quality measures. The algorithms were built-in into the HYSOMA (Hyperspectral SOil MApper) software interface, providing an experimental platform for soil mapping applications of hyperspectral imagery that gives the choice of multiple algorithms for each soil parameter. The software interface focuses on fully automatic generation of semi-quantitative soil maps such as soil moisture, soil organic matter, iron oxide, clay content, and carbonate content. Additionally, a field calibration option calculates fully quantitative soil maps provided ground truth soil data are available. Implemented soil algorithms have been tested and validated using extensive in-situ ground truth data sets. The source of the HYSOMA code was developed as standalone IDL software to allow easy implementation in the hyperspectral and non-hyperspectral communities. Indeed, within the hyperspectral community, IDL language is very widely used, and for non-expert users that do not have an ENVI license, such software can be executed as a binary version using the free IDL virtual machine under various operating systems. Based on the growing interest of users in the software interface, the experimental software was adapted for public release version in 2012, and since then ~80 users of hyperspectral soil products downloaded the soil algorithms at www.gfz-potsdam.de/hysoma. The software interface was distributed for free as IDL plug-ins under the IDL-virtual machine. Up-to-now distribution of HYSOMA was based on a close source license model, for non-commercial and educational purposes. Currently, the HYSOMA is being under further development in the context of the EnMAP satellite mission, for extension and implementation in the EnMAP Box as EnSoMAP (EnMAP SOil MAPper). The EnMAP Box is a freely available, platform-independent software distributed under an open source license. In the presentation we will focus on an update of the HYSOMA software interface status and upcoming implementation in the EnMAP Box. Scientific software validation, associated publication record and users responses as well as software management and transition to open source will be discussed.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-04-24
    Description: The data set contains VNIR and SWIR raw and reference hyperspectral imaging data of the Apliki mine open cut and of samples from the surface of the mine measured in the laboratory. It is con-nected to the published spectral library and chemical analyses of 37 different surface materials from the copper-gold-pyrite mine Apliki in the Republic of Cyprus (Koerting et al., 2019). The field outcrop scan was acquired in March 2018 in cooperation with the Geological Survey Department of the Republic of Cyprus (GSD) and the German Research Centre for Geosciences (GFZ). The laboratory sample scan presented in this document is a collection of hyperspectral scans compiled in one large dataset. The hyperspectral data in the field and the lab were acquired with the HySpex sys-tem in a range of 414 – 2498 nm. The field data is shared as one VNIR and one SWIR radiance and reflectance data cube each. The laboratory data is shared as one full VNIR-SWIR (414 – 2450nm) reflectance data cube that was processed and corrected for the detector jump, data spikes and the last 8 SWIR bands were clipped due to a low signal to noise ratio (SNR). The data and the samples originate from fieldwork in the Republic of Cyprus and laboratory work at the GFZ Potsdam. A detailed description of the data acquisition and processing can be found in Koerting (2021).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  7th EARSeL SIG Imaging Spectroscopy workshop (Edinburgh, Scotland 2011)
    Publication Date: 2020-02-12
    Description: An end-to-end Simulation software (EeteS) has been developed in the frame of the Environmental Mapping and Analysis Program (EnMAP) mission, and results are presented based on the approach of the complete processing chain simulation. The main objective of a hyperspectral sensor simulator is to provide an end-to-end capability which allows whether the science goals or the mission requirements can be met. Therefore, it may be a handful tool for a variety of tasks and system’s tradeoffs analysis, by defining of future Earth imaging systems, allowing the optimization of fundamental instrument parameters, the development and validation of calibration and data pre-processing algorithms or the generation of realistic images for the scientific exploitation. Based on spectral and spatial high resolution image data EnMAP-like image scenes (L0) are simulated taking into account varying instrumental and environmental configurations. The sequential processing chain consists of four independent modules referred to as atmospheric, spatial, spectral and radiometric. This forward simulator is coupled to a series of pre-processing modules (radiometric calibration, co-registration, atmospheric correction and orthorectification) in order to build a representative end-to-end simulation model. EeteS is able to derive EnMAP reflectance images after the complete L1 and L2 processing chain. The analysis of final and intermediate EeteS products resulting from the processing chain supports the decision making process of engineers and scientists involved in the Mission. Selected case studies for end-to-end simulations are presented emphasizing on quantitative evaluation of the influence of instrumental and processing errors on data quality and the retrieval of higher-level image products.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-12
    Description: The International Continental Scientific Drilling Program (ICDP) performed a dual-phase scientific drilling project to investigate mountain-building processes called Collisional Orogeny in the Scandinavian Caledonides (COSC). The borehole COSC-1 was drilled through the Lower Seve Nappe, as the first of two 2.5 km deep drill holes close to Åre, central Sweden. The recovered rocks comprise a 1650 m thick suite of high grade gneisses and amphibolites with clear Seve Nappe affinities, while the lower 850 m comprise rather homogenous mylonitic gneisses with interfingered K-rich phyllonite bands of cm to several m size and some intercalated amphibolites. The different lithologies all crosscut the core in a subhorizontal direction with foliation of gneisses and phyllonites in the same direction. Albite and garnet porphyroblasts with pressure shadows show syn-deformational growth and the same sub-horizontal alignment. The focus of this study was to detect chemical and mineralogical differences in mylonitic and host rocks and to relate these differences to either metasomatism and deformation or inherited source rock variance. Another goal of this work is to compare chemical core scanning instruments. For this purpose two different X-Ray Fluorescence (XRF) techniques, Laser Induced Breakdown Spectroscopy (LIBS) and hyperspectral imaging served to measure seven samples from the lower 850 m of the COSC-1 core. This data publication comprises the datasets gained in the course of this study. The metadata (OF WHAT?) will be presented in an additional file including XRF data from the Avaatech XRF core scanner in a txt.file as well as datasets of the other used devices in original file formats.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...