GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): G00H02, doi:10.1029/2009JG001215.
    Description: Experimental manipulations provide a powerful tool for understanding an ecosystem's response to environmental perturbation. We combined paired eddy covariance towers with an experimental manipulation of water availability to determine the response of marsh carbon balance to drought. We monitored the Net Ecosystem Exchange of CO2 (NEE) in two ponds from 2004 to 2009 at the San Joaquin Freshwater Marsh (SJFM), and subjected one of the ponds to a yearlong drought treatment in 2007. The two ponds experienced similar flooding and environmental regimes before and after the drought, ensuring that differences between ponds were largely attributable to the 2007 drought. Drought substantially reduced surface greenness, as measured by the Enhanced Vegetation Index (EVI) and photosynthetic carbon sequestration, primarily by inhibiting leaf area development. Respiratory carbon losses were less influenced by drought than photosynthetic carbon gains. The effect of the drought lasted several years, with delayed leaf area development and peak carbon uptake rates during the subsequent year, and reduced leaf area for a couple of years. The combined effect of the drought and legacy effects created an overall loss of carbon that was equivalent to 4 years of the maximum annual carbon sequestration observed over a decade. Our results indicate that drought can have long-term impacts on ecosystem carbon balance and that future projected drought increases in Southern California will have a negative impact on marsh carbon sequestration.
    Keywords: Wetlands ; NEE ; Phenology ; Disturbance legacies ; Drought
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A., V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A., Epstein, H. E., Frost, G., V., Goeckede, M., Hoye, T. T., Mamet, S. D., O'Donnell, J. A., Olefeldt, D., Phoenix, G. K., Salmon, V. G., Sannel, A. B. K., Smith, S. L., Sonnentag, O., Vaughn, L. S., Williams, M., Elberling, B., Gough, L., Hjort, J., Lafleur, P. M., Euskirchen, E. S., Heijmans, M. M. P. D., Humphreys, E. R., Iwata, H., Jones, B. M., Jorgenson, M. T., Gruenberg, I., Kim, Y., Laundre, J., Mauritz, M., Michelsen, A., Schaepman-Strub, G., Tape, K. D., Ueyama, M., Lee, B., Langley, K., & Lund, M. Shallow soils are warmer under trees and tall shrubs across arctic and boreal ecosystems. Environmental Research Letters, 16(1), (2021): 015001. doi:10.1088/1748-9326/abc994.
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Description: We thank G Peter Kershaw, LeeAnn Fishback, Cathy Wilson, and Coleen Iversen for assistance in collection of data. We thank the Permafrost Carbon Network for support and organization of the data synthesis. We thank Vladimir Romanovsky for his feedback and contribution of publicly available data. This project was supported by the National Science Foundation (Grant No. 1417745 to M L, Grant No. 1417700 to S M N, Grant No. 1417908 to A K, Grant No. 1556772 to A R, Grant No. 1637459 to L G, Grant No. 1636476 and Grant No. 1503912 to E S E, Grant No. 1806213 to B M J, Grant No. 1833056 to K D T), UK Natural Environment Research Council (Grant No. NE/M016323/1 to I H M S, Grant No. NE/K00025X/1 to G K P, Grant No. NE/K000292/1 to M W), Natural Sciences and Engineering Research (to P L, I H M S, Grant No. RGPIN-2016-04688 to D O), Council of Canada, Canadian Graduate Scholarship to (I H M -S), Greenland Ecosystem Monitoring Programme: ClimateBasis (to J A and K A), The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science (to A L B), Engineer Research and Development Center Army Direct (6.1) Research Program and the Strategic Environmental Research and Development Program (projects RC-2110 and 18-1170 to T A D), United States Geological Survey (to E E S), Arctic Challenge for Sustainability (ArCS; Grant No. JPMXD1300000000) and ArCS II (Grant No. JPMXD1420318865) (to M U and H I), the Danish National Research Foundation (Grant No. CENPERM DNRF100 to B E), the Academy of Finland (Grant No. 315519), the National Research Foundation of Korea (Grant Nos. NRF-2016M1A5A1901769; KOPRI-PN20081 to K Y and B Y L), Research Network for Geosciences in Berlin and Potsdam (to I G), the Swiss National Science Foundation (Grant No. 140631 to G S S), the URPP Global Change and Biodiversity, University of Zurich (to G S S), the University of Alberta Northern Research Awards (to D O), and the Northern Scientific Training Program (to D O), and UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) Office of Science, Biological and Environmental Research (to V G S). S M has been supported by grants and/or in-kind from Natural Sciences and Engineering Research Council of Canada, AMAX Northwest Mining, Co. (North American Tungsten Corp., Ltd), Imperial Oil, Ltd, University of Alberta, Earthwatch International (EI), The Garfield Weston Foundation, Wapusk National Park, Churchill Northern Studies Centre, and the Northern Scientific Training Program. All code for this project are archived (DOI: 10.5281/zenodo.4041165). The data that support the findings of this study are openly available through the Arctic Data Center (Heather Kropp, Michael Loranty, Britta Sannel, Jonathan O'Donnell, Elena Blanc-Betes, et al 2020. Synthesis of soil-air temperature and vegetation measurements in the pan-Arctic. 1990-2016. Arctic Data Center. doi:10.18739/A2736M31X).
    Keywords: Arctic ; Boreal forest ; Soil temperature ; Vegetation change ; Permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 363–378, doi:10.1002/2014JF003180.
    Description: Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.
    Description: We are pleased to acknowledge funding from the US National Science Foundation, grants DEB-1026843 and EF-1065587, to the Marine Biological Laboratory. Additional logistical support was provided by Toolik Field Station and CH2MHill, funded by NSF's Office of Polar Programs.
    Description: 2015-08-24
    Keywords: Soil thermal dynamics ; Fire disturbance ; Thermal conductivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © IOP Publishing, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 7 (2012): 044039, doi:10.1088/1748-9326/7/4/044039.
    Description: Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (〉10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.
    Description: This work was supported by NSF grants #1065587 to the Marine Biological Laboratory, Woods Hole.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 11 (2016): 034014, doi:10.1088/1748-9326/11/3/034014.
    Description: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
    Description: This work was supported by the National Science Foundation ARCSS program and Vulnerability of Permafrost Carbon Research Coordination Network (grants OPP-0806465, OPP-0806394, and 955713) with additional funding from SITES (Swedish Science Foundation), Future Forest (Mistra), and a Marie Curie International Reintegration Grant (TOMCAR-Permafrost #277059) within the 7th European Community Framework Programme.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carey, J. C., Abbott, B. W., & Rocha, A. V. Plant uptake offsets silica release from a large arctic tundra wildfire. Earth’s Future, 7(9), (2019): 1044-1057, doi:10.1029/2019EF001149.
    Description: Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation and associated weathering, but that changes in lateral silica export may depend on vegetation uptake during the first decade of postwildfire succession.
    Description: This research was supported by NSF EAR PD Fellowship 1451527 to J. C. Carey, NSF grants 1065587 and 1026843 to the Marine Biological Laboratory, and NSF grant 1556772 to the University of Notre Dame. B. W. Abbott was supported by the Plant and Wildlife Department and College of Life Sciences at Brigham Young University. Data are available from the Dryad Digital Repository (doi:10.5061/dryad.79q74n7). We thank Ian Klupar for field assistance. R. Fulweber at the Toolik Field Station GIS & Remote Sensing Office performed watershed delineations and other spatial analysis. We thank the NSF Arctic LTER and the UAF Toolik Field Station for logistical support. We declare no conflicts of interest.
    Keywords: silica ; Arctic ; tundra ; wildfire ; vegetation ; permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-11-02
    Description: Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
    Description: Published
    Description: 6379
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: Arctic climate ; vegetation type ; surface energy budget
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
  • 19
    Publication Date: 2024-04-22
    Description: Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-01-23
    Description: Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We investigated the post-fire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the post-fire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e. in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among post-fire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession. # doi:10.1890/14-1921.1
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...