GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2021-02-08
    Description: Sea surface temperature (SST) variability in the tropical Atlantic Ocean strongly impacts the climate on the surrounding continents. On interannual time scales, highest SST variability occurs in the eastern equatorial region and off the coast of southwestern Africa. The pattern of SST variability resembles the Pacific El Niño, but features notable differences, and has been discussed in the context of various climate modes, that is, reoccurring patterns resulting from particular interactions in the climate system. Here, we attempt to reconcile those different definitions, concluding that almost all of them are essentially describing the same mode that we refer to as the “Atlantic Niño.” We give an overview of the mechanisms that have been proposed to underlie this mode, and we discuss its interaction with other climate modes within and outside the tropical Atlantic. The impact of Atlantic Niño‐related SST variability on rainfall, in particular over the Gulf of Guinea and north eastern South America is also described. An important aspect we highlight is that the Atlantic Niño and its teleconnections are not stationary, but subject to multidecadal modulations. Simulating the Atlantic Niño proves a challenge for state‐of‐the‐art climate models, and this may be partly due to the large mean state biases in the region. Potential reasons for these model biases and implications for seasonal prediction are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly, 13.-18.04, Vienna, Austria .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-02-01
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-01-31
    Description: A strong warm event occurred in the southeastern tropical Atlantic Ocean off Angola and Namibia in January and February 2016 with sea surface temperature anomalies reaching 3 °C. In contrast to classical Benguela Niño events, the analysis of various direct observations indicates that the warming was not predominantly forced by an equatorial Kelvin wave exciting a coastally trapped wave but instead resulted from a combination of local processes that are related to (1) a weakening of the alongshore, i.e. mainly southerly, winds and (2) enhanced freshwater input through local precipitation and river discharge. Consistent with the weakened winds, we find a reduction in latent heat loss from the ocean and a poleward surface current anomaly. The surface freshening, which is detected in satellite observations of sea surface salinity, caused a very shallow mixed layer and enhanced upper ocean stratification. This is supported by the analysis of the velocity structure of the Angola Current at 11°S, which shows that at the time of the event subsurface velocities were directed northward while surface velocities were directed southward. The shallow layer of warm and fresh surface water was thus advected poleward by the surface current. In addition, a reduction of the local upwelling and the formation of a barrier layer that inhibits the entrainment of cool subsurface waters into the surface mixed layer might have contributed to the warm surface anomaly. The sudden termination of the warm event was accompanied by a re-intensification of southerly winds in March
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: The Atlantic Nino is one of the most important patterns of interannual tropical climate variability, but how climate change will influence this pattern is not well known due to large climate model biases. Here we show that state-of-the-art climate models robustly predict a weakening of Atlantic Ninos in response to global warming, mainly due to a decoupling of subsurface and surface temperature variations as the upper equatorial Atlantic Ocean warms. This weakening is predicted by most (〉80%) models in the Coupled Model Intercomparison Project Phases 5 and 6 under the highest emission scenarios. Our results indicate a reduction in variability by the end of the century by 14%, and as much as 24-48% when accounting for model errors using a simple emergent constraint analysis. Such a weakening of Atlantic Nino variability will potentially impact climate conditions and the skill of seasonal predictions in many regions. The Atlantic Nino is an important mode of tropical climate variability, but how it reacts to climate change is not well known due to model biases. Here the authors show a robust weakening of the Atlantic Nino of up to 24-48% under high emissions until the end of the century.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: The Atlantic Niño is the leading mode of interannual sea-surface temperature (SST) variability in the equatorial Atlantic and assumed to be largely governed by coupled ocean-atmosphere dynamics described by the Bjerknes-feedback loop. However, the role of the atmospheric diabatic heating, which can be either an indicator of the atmosphere’s response to, or its influence on the SST, is poorly understood. Here, using satellite-era observations from 1982–2015, we show that diabatic heating variability associated with the seasonal migration of the Inter-Tropical Convergence Zone controls the seasonality of the Atlantic Niño. The variability in precipitation, a measure of vertically integrated diabatic heating, leads that in SST, whereas the atmospheric response to SST variability is relatively weak. Our findings imply that the oceanic impact on the atmosphere is smaller than previously thought, questioning the relevance of the classical Bjerknes-feedback loop for the Atlantic Niño and limiting climate predictability over the equatorial Atlantic sector.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-01-06
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-07-21
    Description: Observations of the magnetization state of asteroids indicate diverse properties. Values between 1.9  × 10 −6 Am 2/kg (Eros) and 10 −2 Am 2/kg (Braille) have been reported. A more detailed understanding of asteroidal magnetic properties allows far-reaching conclusions of the magnetization mechanism as well as the strength of the magnetic field of the solar system regions the asteroid formed in. The Hayabusa2 mission with its lander Mobile Asteroid Surface Scout is equipped with a magnetometer experiment, MasMag. MasMag is a state-of-the-art three-axis fluxgate magnetometer, successfully operated also on Philae, the Rosetta mission lander. MasMag has enabled, after Eros for the second time ever, to determine the magnetic field of an asteroid during descent and on-surface operations. The new observations show that Ryugu, a low-albedo C-type asteroid, has no detectable global magnetization, and any local magnetization is either small ( 〈10−6 Am 2/kg) or on very small (subcentimeter) scales. This implies, for example, that energetic solar wind particles could reach and alter the surface unimpeded by strong asteroidal magnetic fields, such as minimagnetospheres in case of the Moon.
    Keywords: 523 ; asteroids ; magnetization ; MASCOT ; Hayabusa2 ; magnetic field ; Ryugu
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foltz, G. R., Brandt, P., Richter, I., Rodriguez-Fonsecao, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., Lefevre, N., Da Cunha, L. C., Mcphaden, M. J., Araujo, M., Karstensen, J., Hahn, J., Martin-Rey, M., Patricola, C. M., Poli, P., Zuidema, P., Hummels, R., Perez, R. C., Hatje, V., Luebbecke, J. F., Palo, I., Lumpkin, R., Bourles, B., Asuquo, F. E., Lehodey, P., Conchon, A., Chang, P., Dandin, P., Schmid, C., Sutton, A., Giordani, H., Xue, Y., Illig, S., Losada, T., Grodsky, S. A., Gasparinss, F., Lees, T., Mohino, E., Nobre, P., Wanninkhof, R., Keenlyside, N., Garcon, V., Sanchez-Gomez, E., Nnamchi, H. C., Drevillon, M., Storto, A., Remy, E., Lazar, A., Speich, S., Goes, M., Dorrington, T., Johns, W. E., Moum, J. N., Robinson, C., Perruches, C., de Souza, R. B., Gaye, A. T., Lopez-Paragess, J., Monerie, P., Castellanos, P., Benson, N. U., Hounkonnou, M. N., Trotte Duha, J., Laxenairess, R., & Reul, N. The tropical Atlantic observing system. Frontiers in Marine Science, 6(206), (2019), doi:10.3389/fmars.2019.00206.
    Description: he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Description: MM-R received funding from the MORDICUS grant under contract ANR-13-SENV-0002-01 and the MSCA-IF-EF-ST FESTIVAL (H2020-EU project 797236). GF, MG, RLu, RP, RW, and CS were supported by NOAA/OAR through base funds to AOML and the Ocean Observing and Monitoring Division (OOMD; fund reference 100007298). This is NOAA/PMEL contribution #4918. PB, MDe, JH, RH, and JL are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. German participation is further supported by different programs funded by the Deutsche Forschungsgemeinschaft, the Deutsche Bundesministerium für Bildung und Forschung (BMBF), and the European Union. The EU-PREFACE project funded by the EU FP7/2007–2013 programme (Grant No. 603521) contributed to results synthesized here. LCC was supported by the UERJ/Prociencia-2018 research grant. JOS received funding from the Cluster of Excellence Future Ocean (EXC80-DFG), the EU-PREFACE project (Grant No. 603521) and the BMBF-AWA project (Grant No. 01DG12073C).
    Keywords: Tropical Atlantic Ocean ; Observing system ; Weather ; Climate ; Hurricanes ; Biogeochemistry ; Ecosystems ; Coupled model bias
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 2305-2327, doi:10.1175/BAMS-D-15-00274.1.
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Description: PZ, BK, and RM acknowledge support from NOAA Grant NA14OAR4310278, and PZ acknowledges support from NSF AGS-1233874. BM acknowledges support from the Regional and Global Climate Modeling Program of the U.S. Department of Energy’s Office of Science, Cooperative Agreement DE-FC02-97ER62402. PC acknowledges support from U.S. NSF Grants OCE-1334707 and AGS-1462127, and NOAA Grant NA11OAR4310154. PC also acknowledges support from China’s National Basic Research Priorities Programme (2013CB956204) and the Natural Science Foundation of China (41222037 and 41221063). TF acknowledges support from NSF Grant OCE-0745508 and NASA Grant NNX14AM71G. PB acknowledges support from the BMBF SACUS (03G0837A) project. TT and PB acknowledge support from the European Union Seventh Framework Programme (FP7 20072013) under Grant Agreement 603521 for the PREFACE Project. ES and ZW acknowledge support from NSF AGS-1338427, NOAA NA14OAR4310160, and NASA NNX14AM19G; and ES is grateful for further support from the National Monsoon Mission, Ministry of Earth Sciences, India.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...