GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2016-09-29
    Description: Phagotrophy and competitive ability of the mixotrophic Ochromonas minima were investigated in a three-factorial experiment where light intensity (low: 1.0 μmol m−2 s−1 and high: 60 μmol m−2 s−1 PPFD), nutrient concentration (ambient: 7.0 μmol N l−1, 0.11 μmol P l−1 and enriched: 88 μmol N l−1, 6.3 μmol P l−1) and DOC supply (without and with enrichment, 250 μmol C l−1) were manipulated. Ochromonas minima and bacterial abundance were monitored for 12 days. We found significant and interacting effects of light and nutrients on Ochromonas minima growth rate and abundance. At high light intensity, nutrient enrichment resulted in increased growth rates and population sizes. In contrast, reduced growth rates and population sizes were observed for nutrient enrichment when light intensity was low. Although, Ochromonas minima was able to ingest bacteria under both high and low light conditions, it grew only when light intensity was high. At high light intensity, Ochromonas minima grew exponentially under nutrient conditions that would have been limiting for photoautotrophic microalgae. In non-enriched low light treatments, Ochromonas minima populations survived, probably by using background DOC as an energy source, indicating that this ability can be of relevance for natural systems even when DOC concentrations are relatively low. When competing with photoautotrophic microalgae, the ability to grow under severe nutrient limitation and to survive under light limitation should be advantageous for Ochromonas minima.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 219-229, ISSN: 0022-0981
    Publication Date: 2017-11-21
    Description: According to climate models, coastal ecosystems will face an increased frequency of heat waves and increased turbidity due to terrestrial sediment run-off induced by increasing precipitation. Several studies have examined the effects of heat waves and turbidity separately, whereas this study analysed the individual effects of both stressors as well as their interaction, because stressors affect communities differently when acting in combination. Using a factorial experimental design, we simulated heat waves (22 °C and 26 °C compared to an 18 °C control) and turbidity (sediment addition). The response of the phytoplankton community was analysed for the aggregate parameters biovolume and diversity index (H′), as well as for community composition. Heat waves had a significant negative effect on biovolume, whereas turbidity tended to affect biovolume positively. Repeated measures ANOVA revealed significant interactions of heat waves and turbidity for H′ and community composition. Strong heat waves (26 °C) alleviated the otherwise positive effect of turbidity on H′, i.e. highest diversity remained in the turbid control. Diatoms gained dominance in the control and the 22 °C heat wave treatment with Cylindrotheca closterium being the successful competitor. At 26 °C this species was lost and small flagellates dominated the experimental communities. Future increases in heat wave intensity and frequency may thus induce major changes in phytoplankton community structure whereas algae might profit from increased turbidity as an additional source of nutrients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...