GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 11
    Publikationsdatum: 2018-10-15
    Beschreibung: Ongoing climate change focuses attention on the Arctic cryosphere’s responses to past and future climate states. Although it is now recognized the Arctic Ocean Basin was covered by ice sheets and their associated floating ice shelves several times during the Late Pleistocene, the timing and extent of these polar ice sheets remain uncertain. Here we relate a relict barrier-island system on the Beaufort Sea coast of northern Alaska to the isostatic effects of a previously unrecognized ice shelf grounded on the adjacent continental shelf. A new suite of optically stimulated luminescence dates show that this barrier system formed during one or more marine transgressions occurring late in Marine Isotope Stage 5 (MIS 5) between 113 ka and 71 ka. Because these transgressions occurred after the warmest part of the last interglacial (ca. 123 ka) and did not coincide with the global eustatic sea-level maximum during MIS 5e, this indicates Arctic ice sheets developed out-of-phase with lower-latitude sectors of the Laurentide and Fennoscandian ice sheets. We speculate that Arctic ice sheets began development during full interglacial conditions when abundant moisture penetrated to high latitudes, and low summer insolation favored glacier growth. These ice sheets reached their full extents at interglacial-glacial transitions, then wasted away at the heights of mid-latitude glaciations because of moisture limitations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2020-09-14
    Beschreibung: The Action Group called ‘Standardized methods across Permafrost Landscapes: from Arctic Soils to Hydrosystems’ (SPLASH) is a community-driven effort aiming to provide a suite of standardized field strategies for sampling mineral and organic components in soils, sediments, and water across permafrost landscapes. This unified approach will allow data from different landscape interfaces, field locations and seasons to be shared and compared, thus improving our understanding of the processes occurring during lateral transport in circumpolar Arctic watersheds.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2021-03-14
    Beschreibung: Lakes and drained lake basins (DLBs) are dominant landforms across Arctic lowland regions. The long-term dynamics of lake formation and drainage is evident in the abundance of lakes and DLBs covering as much as 80% of the landscape in various regions of Arctic Alaska, Russia, and Canada. Lake drainage can be triggered through different mechanisms such as lake tapping by an adjacent stream, bank overflow or ice wedge degradation. Following drainage, DLBs can become valuable grazing land for caribou and reindeer as well as usable land for infrastructure development due to low ground ice content in recent DLBs. In addition, DLBs can be sites for soil organic carbon accumulation in the form of peat which also play a role for carbon cycling. Comprehensive and accurate mapping of DLB distribution, age and drainage mechanism, will further inform our understanding of their role in permafrost landscape evolution across varying timescales. DLBs differ from the surrounding terrain in vegetation structure and composition, soil moisture, elevation, size and types of ice-wedge polygons and other parameters that make them an identifiable target based on remote sensing data. Here, we present a novel approach to map DLBs in permafrost landscapes with a specific focus on the North Slope of Alaska as well as select areas in Siberia and northwestern Canada. To map DLBs, we combined multispectral satellite imagery (Landsat-8 and Sentinel-2), Synthetic Aperture Radar (SAR) acquisitions (Sentinel-1), and DEM data (ArcticDEM). To cover the entire study area in each region, we included Landsat-8 acquisitions from all available years and Sentinel-2 for 2016 and 2018 to create cloud-free mosaics. The classification combines methodologies from pixel-based and object-based image analysis. To allow for processing of these large datasets that cover more than 200.000 km2, a classification workflow was developed in Google Earth Engine. Preliminary results show good agreement of our classification with previously published data sets for subsets of our North Slope study area. This work marks the first attempt to map DLBs at the pan-Arctic scale. Our results highlight the importance of treating areas of different surficial geology and vegetation communities separately in the classification process to ensure higher classification accuracy.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2021-02-28
    Beschreibung: Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome!
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    Elsevier
    In:  EPIC3Sedimentary Geology, Elsevier, 340, pp. 25-37, ISSN: 00370738
    Publikationsdatum: 2016-09-23
    Beschreibung: Thermokarst lakes develop as a result of the thaw and collapse of ice-rich, permanently frozen ground (permafrost). Of particular sedimentological importance are thermokarst lakes forming in late Pleistocene icy silt (yedoma),which dramatically alter the land surface by lowering surface elevation and redistributing upland sediment into lower basins. Our study provides the first description of yedoma thermokarst lake sedimentology based on the crossbasin sampling of an existing lake. We present lake sediment facies descriptions based on data from sediment cores from two thermokarst lakes of medium depth, Claudi and Jaeger (informal names), which formed in previously non thermokarst-affected upland yedoma on the northern Seward Peninsula, Alaska. We identify four prominent facies using sedimentological, biogeochemical, and macrofossil indicators: a massive silt lacking aquatic macrofossils and other aquatic indicators situated below a sub-lacustrine unconformity (Facies 1); two basal deposits: interbedded organic silt and chaotic silt (Facies 2–3); and a silt-rich mud (Facies 4). Facies 1 is interpreted as yedoma that has thawed during lake formation. Facies 3 formed adjacent to the margin due to thaw and collapse events from the lake shore. Material from Facies 3 was reworked by wave action to form Facies 2 in a medium energy margin environment. Facies 4 formed in a lower energy environment toward the lake basin center. This facies classification and description should enhance our ability (i) to interpret the spatial and temporal development of lakes and (ii) to reconstruct long-term patterns of landscape change.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2017-02-11
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2016-12-09
    Beschreibung: Arctic clastic coastlines are some of the most dynamic in the world and have a large impact on cultural and natural resources. Sea ice plays an important role in the erosion and accretion dynamics of these coastlines, and sea ice cover is currently declining at 〉10% per decade. As a result of declining sea ice cover and an increase in the duration of open water days in the Arctic Ocean, we need to know more about coastal processes in polar seas, specifically how sea ice decline changes coastal processes, the rate at which such coastal changes can occur, and how the effects of declining sea ice interacts with local coastline characteristics including wave fetch, bathymetry, permafrost properties onshore, and pre-existing coastal geomorphology. To assess the influence of sea ice decline on permafrost coastal dynamics we selected two segments of the coastline in NW Alaska with contrasting geography, surficial geology and geomorphology. Study site A, Cape Krusenstern National Monument (CAKR), has a wave-dominated, west- to south-west facing, coarseclastic shoreline. Accreted beach ridges, barrier-closed lagoons, permafrost bluffs, longshore gravel bars, and gravelly beaches characterize coastal geomorphology. Study site B, the Bering Land Bridge National Park and Preserve (BELA), has a north-facing coastline with a shoreline characterized by yedoma and thermokarst basin permafrost bluffs, aggrading spits, sandy barrier islands, and open lagoons. To establish rates of coastal change and identify key geomorphological processes, we digitally mapped the shoreline of both study areas using aerial photographs (1-meter resolution or better) and sub-meter resolution World View-2 satellite imagery from 2003 and 2014, respectively. We compared our data to the results of previous studies based on imagery taken between 1950 and 2003 (Lestak et al., 2010). To better understand the relationship between geomorphology and rates of change, we established geomorphological landform classes for both study areas. We mapped coastal changes within a subset of each study area, using sub meter resolution imagery, over annual time steps to help us better quantify variations in the rate of event driven coastline change. Mapping results for the period 2003 to 2014 suggest a change in erosion rates within both study sites. Erosion rates for the period 1950 to 2003 in BELA and CAKR were -0.12 m/yr and -0.98 m/yr respectively, where the negative signs indicate shoreline retreat (Gorokhovich and Leiserowiz, 2012). These rates, for the period between 2003 and 2014, increased in CAKR to -0.86 and decreased in BELA to -0.69 m/yr. Rates of erosion were found to vary according to geomorphology, with overwash fans in BELA exhibiting the highest rates of change at -1.3 m/yr. Significant changes in geomorphology were observed for this time period including the development of a 200-meter long spit in CAKR, degradation of ice wedges on upland yedoma bluffs in BELA, and the infilling of numerous barrier island ponds due to overwash events in BELA. Our results illustrate the complexity of coastal responses along Arctic coastlines even within close proximity. To ensure robust projections of future coastal change, further mapping and analysis at intraannual and sub-meter spatial resolution is necessary to firmly tie together cause and effect of arctic coastal processes with a changing climate. References: 1. Gorokhovich, Y., Leiserowiz, A., 2012. Historical and Future Coastal Changes in Northwest Alaska. J. Coast. Res. 28, 174–186. 2. Lestak, L.R., Manley, W.F., Parrish, E.G., 2010. Digital Shoreline Analysis of Coastal Change in Bering Land Bridge NP (BELA) and Cape Krusenstern NM (CAKR), Northwest Alaska: Fairbanks, AK: National Park Service, Arctic Network I&M Program. Geospatial Dataset-2184176.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2016-12-25
    Beschreibung: Permafrost regions have been identified to host a soil organic carbon (C) pool of global importance, storing more than 1500 PgC. A large portion of this C pool is currently frozen in deep soils and permafrost deposits. Permafrost thaw hence may result in mobilization of large amounts of C as greenhouse gases, dissolved organic C, or particulate organic matter, with substantial impacts on C cycling and C pool distribution. Understanding potential consequences and feedbacks of permafrost degradation therefore requires better quantification of processes and landforms related to thaw. While many predictive land surface models so far consider a gradual increase in the average active layer thickness across the permafrost domain, rapid shifts in landscape topography and surface hydrology caused by thaw of ice-rich permafrost are much more difficult to project. Field studies of thermokarst and thermo-erosion indicate highly complex and rapid landscape-ecosystem feedbacks. Contrary to top-down permafrost thaw that may affect any permafrost type at the surface, both thermokarst and thermo-erosion are considered pulse disturbances that are closely linked to presence of near-surface ice-rich permafrost, are active on short sub-annual to decadal time scales, and may affect C stores tens of meters deep. Here we present a comprehensive review synthesizing measured and modeled rates of thermokarst and thermo-erosion processes from the scientific literature and own observations across the northern Hemisphere permafrost regions. The goal of our synthesis is (1) to provide an overview on the range of thermokarst and thermo-erosion rates that may be used for parameterization of thermokarst and thermo-erosion in ecosystem and landscape models; and (2) to assess simple back-of-the-envelope scenarios of the magnitude of C thaw due to thermokarst and thermo-erosion versus projected active layer thickening. Example scenarios considering thermokarst lake expansion and talik growth indicate that rapid thaw processes have a high possibility to contribute substantially to permafrost C mobilization over the coming century.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2018-12-29
    Beschreibung: Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    facet.materialart.
    Unbekannt
    University of Lisbon and University of Evora
    In:  EPIC34th European Conference on Permafrost, Évora, Portugal, 2014-06-18-2014-06-21University of Lisbon and University of Evora
    Publikationsdatum: 2014-07-10
    Beschreibung: Some of the highest coastal erosion rates in the world are now occurring along non-bedrock, permafrost affected coastlines in the Arctic. Understanding how vulnerable Arctic coastlines are to current and future climate change is critical for resource management, subsistence hunting and gathering, and quantifying the flux of carbon and sediment from a terrestrial to marine environment. Observations since the 1970’s, show that pan-Arctic sea ice extent is decreasing by approximately 12 % per decade, with 2012 exhibiting the longest ice-free season on record. As a result, Arctic coastlines are vulnerable to wave-driven erosion for longer periods. Permafrost borehole temperatures show an overall warming trend, increasing susceptibility to thaw. While several studies already exist pointing at accelerating coastal erosion along the Beaufort Sea coast, studies for the Chukchi Sea coast of NW Alaska have remained inconclusive for the 1950-2003 period. Did recent dramatic changes in sea ice extent, with several sea ice minimum records since the mid 2000’s have an impact on the patterns and processes of coastal dynamics of the Chukchi Sea coast? Here we report on coastal change rates and key geomorphological processes occurring between 2003 and 2013 in comparison to coastal dynamics between 1950 and 2003 along the northern shoreline of the Seward Peninsula, Alaska, USA. Previous studies in our study area, focusing on 1950 to 2003, show rates of change ranging from -5.84 to 2.57 meters per year, indicating the occurrence of both erosion and aggradation. Our study shoreline is a complex system of barrier islands, sand spits, yedoma bluffs and drained thermokarst lake basins. The 1950-2003 coastal change data is based on aerial imagery covering 3 time steps (ca. 1950, ca. 1978, and 2003) that was analyzed by Lestak et al. 2010. To place recent coastal change dynamics since then in a spatial context, we conducted geomorphological analysis using 22 sub-meter resolution panchromatic World View 2 images from June 2013 and a five-meter resolution interferometric synthetic aperture radar derived digital elevation model acquired in summer 2012. We identified key geomorphological processes associated with coastal change and analyzed sediment redistribution between yedoma bluffs, lagoons and spits. Although relatively stable, ice wedge degradation was observed in yedoma bluff areas. Barrier islands, tidal channels, and overwash deposits showed significant variation in morphology during the study period. We further collected weather station data from Shishameref and Kotzebue, the two closest climate stations to the study area, and plan to extract sea ice and sea surface temperature data for the immediate region offshore our study coast. Our results illustrate the heterogeneous nature of coastal dynamics along the Arctic coastline and the need to acknowledge this when modelling future coastal response to sea ice decline and climate change.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...