GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 155 (1993), S. 248-256 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Although the mammalian heat shock response has been well characterized, the processes that mediate the induction of the response and the regulation of heat shock protein function are not completely understood. We have investigated the potential role in heat-shocked cells of phosphoinositide-specific phospholipase C (PLC), a membrane enzyme activity involved in transmembrane signal transduction. Our studies indicate that heat shock activates PLC in each of seven cell lines, including cells of human, rat, mouse, and hamster origin. Heat shock produced increases in inositol phosphate concentrations comparable in magnitude to those achieved after simulation with growth factors, indicating that heat shock might initiate transmembrane signaling cascades of potential importance in cellular regulation. Common cellular responses to heat and growth factors also included feedback modulation of PLC by its products and the parallel stimulation of phospholipase A2 activity. In addition to heat shocki, other agents that induce the stress response stimulated PLC activity. The data indicate a close correlation between expression of the mammalian heat shock response and stimulation of PLC activity and indicate a possible role for this enzyme activity in the regulation of some aspects of the stress response. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 153 (1992), S. 392-401 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Heat shock leads to co-ordinate increases in transcription of a family of heat shock genes, including the mouse hsp70.1 and B2 genes. Activation of the heat shock transcription factor (HSF) by heat shock stimulates transcription of the murine hsp70.1 gene (by RNA polymerase II). B2 genes are short, repetitive sequences whose transcription (by RNA polymerase III) are also increased after heat shock. We have studied whether heat-induced transcription is auto-regulated by the products of the heat shock genes. The results indicate: (1) after an initial heat shock, transcription of the heat shock genes by RNA polymerases II and III becomes desensitized to further heat shock, and the heat-induced DNA binding activity of the HSF is lost, (2) if accumulation of heat shock gene products is inhibited, the desensitizing effect of a prior heat shock is removed, and (3) transcription of the hsp70. 1 and the B2 gene apparently involves different mechanisms, with hsp70.1 employing the HSF and the B2 gene using a separate, heat-activated transcriptional mechanism. However, the level of transcription from the hsp70.1 and B2 genes and the stability of their respective RNAs are co-ordinately regulated by the level of heat shock protein in the cell. The data indicate that auto-regulation of the level of mouse heat shock gene products is mediated by RNA polymerase II transcripts but that the regulatory mechanism can control transcription from RNA polymerase III genes as well. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...