GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Earth Surface, American Geophysical Union (AGU), 126(12), ISSN: 2169-9003
    Publication Date: 2024-03-14
    Description: Bedforms of Thwaites Glacier, West Antarctica both record and affect ice flow, as shown by geophysical data and simple models. Thwaites Glacier flows across the tectonic fabric of the West Antarctic rift system with its bedrock highs and sedimentary basins. Swath radar and seismic surveys of the glacier bed have revealed soft-sediment flutes 100 m or more high extending 15 km or more across basins downglacier from bedrock highs. Flutes end at prominent hard-bedded moats on stoss sides of the next topographic highs. We use simple models to show that ice flow against topography increases pressure between ice and till upglacier along the bed over a distance that scales with the topography. In this basal zone of high pressure, ice-contact water would be excluded, thus increasing basal drag by increasing ice-till coupling and till flux, removing till to allow bedrock erosion that creates moats. Till carried across highlands would then be deposited in lee-side positions forming bedforms that prograde downglacier over time, and that remain soft on top through feedbacks that match till-deformational fluxes from well upglacier of the topography. The bedforms of the part of Thwaites surveyed here are prominent because ice flow has persisted over a long time on this geological setting, not because ice flow is anomalous. Bedform development likely has caused evolution of ice flow over time as till and lubricating water were redistributed, moats were eroded and bedforms grew.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-12
    Description: Pine Island Glacier (PIG) in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is losing mass and contributing to global sea-level rise at an accelerating rate. Although recent observations and modeling have identified the incursion of relatively warm Circumpolar Deep Water (CDW) beneath the PIG ice shelf (PIGIS) as the main driver of this ice-mass loss, the lack of precise bathymetry limits furthering our understanding of the ice-ocean interactions and improving the accuracy of modeling. Here we present updated bathymetry and sediment distribution beneath the PIGIS, modeled by the inversion of aerogravity data with constraints from active-source seismic data, observations from an autonomous underwater vehicle, and the regional gravity-anomaly field derived from satellite gravity observations. Modeled bathymetry shows a submarine ridge beneath the middle of PIGIS that rises ∼350 to 400 m above the surrounding sea floor, with a minimum water-column thickness of ∼200 m above it. This submarine ridge continues across the whole width of the 45-km wide ice shelf, with no deep troughs crossing it, confirming the general features of the previously predicted sub-ice-shelf ocean circulation. However, the relatively low resolution of the aerogravity data and limitations in our inversion method leave a possibility that there is an undetected, few-kilometers-wide or narrower trough that may alter the predicted sub-ice-shelf ocean circulation. Modeled sediment distribution indicates a sedimentary basin of up to ∼800 m thick near the current grounding zone of the main PIG trunk and extending farther inland, and a region seaward of the submarine ridge where sediments are thin or absent with exposed crystalline basement that extends seaward into Pine Island Bay. Therefore, the submarine ridge marks the transition from a thick sedimentary basin providing a smooth interface over which ice could flow easily by sliding or sediment deformation, to a region with no to little sediments and instead a rough interface over which ice flows mainly by deformation. We hypothesize that the post-Last Glacial Maximum retreat of PIG stabilized at this location because of the spatial transition in basal conditions. This in turn supports the hypothesis that the recent retreat of PIG was strongly forced, probably by changes in ocean circulation, rather than occurring because of ongoing response to the end of the ice age or other changes inland of or beneath PIG.
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-08-09
    Description: East Antarctica is the keystone to Gondwana and is fundamental to the understanding of continental breakup and the distribution of continents since the Jurassic, with further implications for the formation of today’s oceans and ice sheets and evolution of climate. Analysis of multiple geophysical datasets in East Antarctica, including radio-echo sounding, potential fields and seismic datasets have revealed the distribution of sedimentary basins within East Antarctica. Differences in the morphology and orientation of sedimentary basins define lithospheric domains separated by basement-dominated regions. The basement highs are defined by multiscale linear features evident in gravity, bed topography and seismic tomography models. These boundaries, we suggest, indicate the margins of former continental blocks that were assembled in the Precambrian to form East Antarctica. Rheological contrasts at block margins controlled later deformation during Phanerozoic extension. First, the formation of variably-oriented sedimentary basins in the Devonian to Triassic is consistent with reactivation of prior architecture and the distribution of major basin-dominated regions is indicative of differences in lithospheric rheology and composition - warmer and compositionally more fertile lithosphere is prone to subsidence. Second, the basement highs are aligned with key features of Gondwana breakup in the Jurassic to Eocene including the Africa-Madagascar-Sri Lanka triple junction, the Kerguelen Plateau, the George V fracture zone of Australian-Antarctic basin and the Macquarie Ridge. We suggest that the differential lithospheric structure of East Antarctica including mantle, crust and basins led to the localisation of these features and fundamentally controlled the geometry of Gondwana breakup.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...