GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Scientific Societies ; 2021
    In:  Phytopathology® Vol. 111, No. 4 ( 2021-04), p. 617-626
    In: Phytopathology®, Scientific Societies, Vol. 111, No. 4 ( 2021-04), p. 617-626
    Abstract: Common scab (CS) is a potato disease that significantly decreases the market value of potato tubers after the development of necrotic lesions on their surface. Streptomyces scabiei is the main causal agent of CS; however, other closely related species, including S. acidiscabies and S. turgidiscabies, have also been shown to cause the disease. In this study, we characterized the genetic and phenotypic diversity of Streptomyces spp. causing CS in Prince Edward Island, the main potato-producing province in Canada. Two hundred and ninety-six pathogenic Streptomyces spp. isolates were retrieved from diseased tubers harvested from six fields located across a longitudinal geographical gradient. Genome fingerprinting analyses using repetitive elements PCR (ERIC- and BOX-PCR) revealed 14 distinct genetic groups. Thirteen groups were taxonomically affiliated with S. scabiei, whereas the fourteenth group was affiliated with S. acidiscabies. Their geographical distribution was characterized and revealed that on average between six and eight different genetic groups were detected per field, with variable abundance. Virulence assays showed strong differences in virulence between the genetic groups, ranging from low to highly virulent. Interestingly, pathogenic Streptomyces spp. populations in each field seem to be dominated by the most virulent genetic groups. The results obtained will contribute to better understanding of the population dynamic of pathogenic Streptomyces spp. causing CS of potato and promoting the development of more efficient detection and intervention tools to manage this important potato disease.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 208889-7
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-8-3)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-8-3)
    Abstract: Common scab of potato causes important economic losses worldwide following the development of necrotic lesions on tubers. In this study, the genomes of 14 prevalent scab-causing Streptomyces spp. isolated from Prince Edward Island, one of the most important Canadian potato production areas, were sequenced and annotated. Their phylogenomic affiliation was determined, their pan-genome was characterized, and pathogenic determinants involved in their virulence, ranging from weak to aggressive, were compared. 13 out of 14 strains clustered with Streptomyces scabiei , while the last strain clustered with Streptomyces acidiscabies . The toxicogenic and colonization genomic regions were compared, and while some atypical gene organizations were observed, no clear correlation with virulence was observed. The production of the phytotoxin thaxtomin A was also quantified and again, contrary to previous reports in the literature, no clear correlation was found between the amount of thaxtomin A secreted, and the virulence observed. Although no significant differences were observed when comparing the presence/absence of the main virulence factors among the strains of S. scabiei , a distinct profile was observed for S. acidiscabies . Several mutations predicted to affect the functionality of some virulence factors were identified, including one in the bldA gene that correlates with the absence of thaxtomin A production despite the presence of the corresponding biosynthetic gene cluster in S. scabiei LBUM 1485. These novel findings obtained using a large number of scab-causing Streptomyces strains are challenging some assumptions made so far on Streptomyces’ virulence and suggest that other factors, yet to be characterized, are also key contributors.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Microbiology Vol. 11 ( 2020-10-9)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 11 ( 2020-10-9)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Canadian Journal of Plant Pathology, Informa UK Limited
    Type of Medium: Online Resource
    ISSN: 0706-0661 , 1715-2992
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2024
    detail.hit.zdb_id: 763044-X
    detail.hit.zdb_id: 2096822-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Physiological and Molecular Plant Pathology, Elsevier BV, Vol. 110 ( 2020-04), p. 101480-
    Type of Medium: Online Resource
    ISSN: 0885-5765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 742470-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Environmental Microbiology, Wiley, Vol. 21, No. 1 ( 2019-01), p. 437-455
    Abstract: Plant‐beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant‐growth promotion and/or disease‐suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine‐1‐carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil‐dwelling plant pathogens and play a role in the ecological competence of phenazine‐producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant‐beneficial phenazine‐producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein‐coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant‐beneficial phenazine‐producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant‐growth promotion and rhizosphere competence.
    Type of Medium: Online Resource
    ISSN: 1462-2912 , 1462-2920
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1436752-X
    detail.hit.zdb_id: 2020213-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Canadian Journal of Microbiology, Canadian Science Publishing, Vol. 68, No. 2 ( 2022-02), p. 91-102
    Abstract: Composts can be efficient organic amendments in potato culture as they can supply carbon and nutrients to the soil. However, more information is required on the effects of composts on denitrification and nitrous oxide emissions (N 2 O) and emission-producing denitrifying communities. The effects of three compost amendments (municipal source separated organic waste compost (SSOC), forestry waste mixed with poultry manure compost (FPMC), and forestry residues compost (FRC)) on fungal and bacterial denitrifying communities and activity was examined in an agricultural field cropped to potatoes during the fall, spring, and summer seasons. The denitrification enzyme activity (DEA), N 2 O emissions, and respiration were measured in parallel. N 2 O emission rates were greater in FRC-amended soils in the fall and summer, whereas soil respiration was highest in the SSOC-amended soil in the fall. A large number of nirK denitrifying fungal transcripts were detected in the fall, coinciding with compost application, while the greatest nirK bacterial transcripts were measured in the summer when plants were actively growing. Denitrifying community and transcript levels were poor predictors of DEA, N 2 O emissions, or respiration rates in compost-amended soil. Overall, the sampling date was driving the population and activity levels of the three denitrifying communities under study.
    Type of Medium: Online Resource
    ISSN: 0008-4166 , 1480-3275
    RVK:
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 280534-0
    detail.hit.zdb_id: 1481972-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 4 ( 2020-02-03)
    Abstract: Bacterial rhizosphere colonization is critical for phytobeneficial rhizobacteria such as phenazine-producing Pseudomonas spp. To better understand this colonization process, potential metabolic and genomic determinants required for rhizosphere colonization were identified using a collection of 60 phenazine-producing Pseudomonas strains isolated from multiple plant species and representative of the worldwide diversity. Arabidopsis thaliana and Solanum tuberosum (potato) were used as host plants. Bacterial rhizosphere colonization was measured by quantitative PCR using a newly designed primer pair and TaqMan probe targeting a conserved region of the phenazine biosynthetic operon. The metabolic abilities of the strains were assessed on 758 substrates using Biolog phenotype microarray technology. These data, along with available genomic sequences for all strains, were analyzed in light of rhizosphere colonization. Strains belonging to the P. chlororaphis subgroup colonized the rhizospheres of both plants more efficiently than strains belonging to the P. fluorescens subgroup. Metabolic results indicated that the ability to use amines and amino acids was associated with an increase in rhizosphere colonization capability in A. thaliana and/or in S. tuberosum . The presence of multiple genetic determinants in the genomes of the different strains involved in catabolic pathways and plant-microbe and microbe-microbe interactions correlated with increased or decreased rhizosphere colonization capabilities in both plants. These results suggest that the metabolic and genomic traits found in different phenazine-producing Pseudomonas strains reflect their rhizosphere competence in A. thaliana and S. tuberosum . Interestingly, most of these traits are associated with similar rhizosphere colonizing capabilities in both plant species. IMPORTANCE Rhizosphere colonization is crucial for plant growth promotion and biocontrol by antibiotic-producing Pseudomonas spp. This colonization process relies on different bacterial determinants which partly remain to be uncovered. In this study, we combined a metabolic and a genomic approach to decipher new rhizosphere colonization determinants which could improve our understanding of this process in Pseudomonas spp. Using 60 distinct strains of phenazine-producing Pseudomonas spp., we show that rhizosphere colonization abilities correlated with both metabolic and genomic traits when these bacteria were inoculated on two distant plants, Arabidopsis thaliana and Solanum tuberosum . Key metabolic and genomic determinants presumably required for efficient colonization of both plant species were identified. Upon further validation, these targets could lead to the development of simple screening tests to rapidly identify efficient rhizosphere colonizers.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2024
    In:  Applied Microbiology and Biotechnology Vol. 108, No. 1 ( 2024-12)
    In: Applied Microbiology and Biotechnology, Springer Science and Business Media LLC, Vol. 108, No. 1 ( 2024-12)
    Abstract: Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans . We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P . infestans , and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P . infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. Key points • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
    Type of Medium: Online Resource
    ISSN: 0175-7598 , 1432-0614
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 1464336-4
    detail.hit.zdb_id: 392453-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Canadian Science Publishing ; 2009
    In:  Canadian Journal of Microbiology Vol. 55, No. 4 ( 2009-04), p. 375-387
    In: Canadian Journal of Microbiology, Canadian Science Publishing, Vol. 55, No. 4 ( 2009-04), p. 375-387
    Abstract: Composting is a microbial process that converts organic waste into a nutrient-rich end product used in horticultural and agricultural applications. The diversity and long-term succession of microorganisms found in composted biosolids has been less characterized than other composts. In this study, bacterial and fungal communities found in composted biosolids aging from 1 to 24 months were studied using denaturing gradient gel electrophoresis (DGGE) and sequencing. The results revealed high levels of diversity, where 53 bacterial species belonging to 10 phyla and 21 fungal species belonging to 4 phyla were identified. Significant differences were observed when comparing the bacterial DGGE patterns of young compost samples, whereas no differences were observed in samples over 8 months. For fungal patterns, no significant differences were observed during the first 4 months of composting, but the diversity then significantly shifted until 24 months. The results indicate that patterns of bacterial species vary during the first few months of composting, whereas fungal patterns generally vary throughout the whole process, except during early stages. The description of the main microbial groups found in composted biosolids could find various applications, including the discovery of biotechnologically relevant microorganisms and the development of novel markers allowing quantitative monitoring of key microorganisms.
    Type of Medium: Online Resource
    ISSN: 0008-4166 , 1480-3275
    RVK:
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2009
    detail.hit.zdb_id: 280534-0
    detail.hit.zdb_id: 1481972-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...