GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Neuropathologica, Springer Science and Business Media LLC, Vol. 133, No. 3 ( 2017-3), p. 463-483
    Type of Medium: Online Resource
    ISSN: 0001-6322 , 1432-0533
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1458410-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Materials Research, Walter de Gruyter GmbH, Vol. 106, No. 7 ( 2015-07-04), p. 697-702
    Abstract: Due to the electronic and structural properties of silicon, silicon nanowires have a great potential in nanoscale electronic devices and sensors. Silicon nanowires used for reconfigurable field effect transistors are designed, synthesized and characterized after each step in order to ensure excellent electrical and physical properties of the end product and to study various process parameters. In this study, silicon nanowire based reconfigurable field effect transistors are studied as as-grown “forests”, individually, oxidized and after forming Schottky junctions. The analysis is performed using scanning electron microscopy and transmission electron microscopy. Focused ion beam based preparation was carried out in the case of samples with Schottky junctions. This paper provides a comprehensive description of sample preparation and characterization of the nanowires.
    Type of Medium: Online Resource
    ISSN: 2195-8556 , 1862-5282
    RVK:
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2015
    detail.hit.zdb_id: 2232675-3
    detail.hit.zdb_id: 2128058-7
    detail.hit.zdb_id: 203021-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2015
    In:  Limnology and Oceanography Vol. 60, No. 5 ( 2015-09), p. 1823-1835
    In: Limnology and Oceanography, Wiley, Vol. 60, No. 5 ( 2015-09), p. 1823-1835
    Abstract: To investigate the role of vanadium‐dependent bromoperoxidase (VBPO) for the production of halogenated methanes in marine prokaryotes, we measured VBPO activity and halomethane production in two strains of Synechococcus ; one with VBPO (strain CC9311) and one without VBPO (strain WH8102). A mutant strain of CC9311, VMUT2, in which the gene for VBPO is disrupted, was also tested. A suite of halomethanes was measured in the headspace above cultures as well as in the culture medium with a purge‐and‐trap method. Monohalomethanes were the most consistently produced molecules among the three strains tested. Additionally, CC9311 produced 301 ± 109 molecules cell −1 d −1 of bromoform (CHBr 3 ) when VBPO activity was detected, while production was not significantly different from zero when VBPO activity was not detected. VBPO activity and CHBr 3 production were only detected when cultures of CC9311 were stirred, which may contribute to the often moderate to weak correlations between CHBr 3 concentration and biological markers in the ocean. No production was seen by VMUT2 or WH8102. These data show that CHBr 3 production rates are dramatically increased with or exclusive to the presence of VBPO, supporting its involvement in CHBr 3 synthesis. This study thus provides genetic evidence that certain strains of marine Synechococcus , under particular conditions, can be a natural source of marine CHBr 3 , which contributes to ozone depletion in the stratosphere.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 2004
    In:  Thrombosis and Haemostasis Vol. 91, No. 03 ( 2004), p. 619-625
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 91, No. 03 ( 2004), p. 619-625
    Abstract: Clotting factor VIII (fVIII)-inhibitory antibodies represent a major problem in the treatment of haemophilia A. To understand the inactivation mechanisms and to pave the way towards modifications of recombinant clotting factors that reduce their immunogenicity, the exact localization of immunodominant epitopes is required. Here, a random peptide phage display library was employed to identify epitopes of polyclonal fVIII antibodies isolated from patient’s plasma by affinity chromatography. FVIIIbinding specificity and inhibitory activity of the isolated fVIII antibodies were confirmed by ELISA and Bethesda assays. Phage selection on the individual samples yielded several phages which were displaced from binding to the respective antibody preparation by fVIII. Their homology with amino acid motifs of human fVIII and immunoprecipitation results with radioactively labelled fVIII fragments suggested putative epitopes in the A1, A2 and C1 domains of fVIII for one and in the C2 domain for another patient. Synthetic peptides corresponding to the A2, C1 and C2 domain epitopes blocked antibody binding to fVIII and partially neutralized the inhibitory activity of the respective plasma in Bethesda assays. These results provide the proof of principle that random peptide libraries can be used for the mapping of epitopes in a polyclonal antibody preparation.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2004
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine Chemistry, Elsevier BV, Vol. 227 ( 2020-12), p. 103896-
    Type of Medium: Online Resource
    ISSN: 0304-4203
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 184352-7
    detail.hit.zdb_id: 1497339-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Brain Research Bulletin, Elsevier BV, Vol. 161 ( 2020-08), p. 13-20
    Type of Medium: Online Resource
    ISSN: 0361-9230
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2004068-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 121, No. 7 ( 2016-04-16), p. 3663-3686
    Abstract: Halon measurements were combined from two large networks and from air archives Complete atmospheric histories for these halons are reported for both hemispheres Complete global emission estimates and a regional H‐2402 emission pattern are reported on
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 125, No. 12 ( 2020-06-27)
    Abstract: Global CH 2 Cl 2 emissions increased by ~85% between 2006 and 2017, mostly due to increasing emissions from Asia Global C 2 Cl 4 emissions decreased in the same period by ~25%, mainly due to reduced emissions from Europe and North America Posterior CH 2 Cl 2 and C 2 Cl 4 emissions provide good agreement with surface and aircraft observational data
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Earth and Planetary Science Letters, Elsevier BV, Vol. 412 ( 2015-02), p. 163-172
    Type of Medium: Online Resource
    ISSN: 0012-821X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 300203-2
    detail.hit.zdb_id: 1466659-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...