GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: OncoImmunology, Informa UK Limited, Vol. 5, No. 7 ( 2016-07-02), p. e1116674-
    Type of Medium: Online Resource
    ISSN: 2162-402X
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2645309-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 9, No. 10 ( 2008), p. R150-
    Type of Medium: Online Resource
    ISSN: 1465-6906
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 2040529-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular and Cellular Pediatrics, Springer Science and Business Media LLC, Vol. 2, No. Suppl 1 ( 2015), p. A13-
    Type of Medium: Online Resource
    ISSN: 2194-7791
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2785551-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 29 ( 2021-10-10), p. 3217-3228
    Abstract: Clinical outcomes of patients with neuroblastoma range from spontaneous tumor regression to fatality. Hence, understanding the mechanisms that cause tumor progression is crucial for the treatment of patients. In this study, we show that FOXR2 activation identifies a subset of neuroblastoma tumors with unfavorable outcome and we investigate the mechanism how FOXR2 relates to poor outcome in patients. MATERIALS AND METHODS We analyzed three independent transcriptional data sets of in total 1030 primary neuroblastomas with full clinical annotation. We performed immunoprecipitation for FOXR2 and MYCN and silenced FOXR2 expression in two neuroblastoma cell lines to examine the effect on cellular processes, transcriptome, and MYCN protein levels. Tumor samples were analyzed for protein levels of FOXR2 and MYCN. RESULTS In three combined neuroblastoma data sets, 9% of tumors show expression of FOXR2 but have low levels of MYCN mRNA. FOXR2 expression identifies a group of patients with unfavorable outcome, showing 10-year overall survival rates of 53%-59%, and proves to be an independent prognostic factor compared with established risk factors. Transcriptionally, FOXR2-expressing tumors are very similar to MYCN-amplified tumors, suggesting that they might share a common mechanism of tumor initiation. FOXR2 knockdown in FOXR2-expressing neuroblastoma cell lines resulted in cell cycle arrest, reduced cell growth, cell death, and reduced MYCN protein levels, all indicating that FOXR2 is essential for these tumors. Finally, we show that FOXR2 binds and stabilizes MYCN protein and MYCN protein levels are highly increased in FOXR2-expressing tumors, in several cases comparable with MYCN-amplified samples. CONCLUSION The stabilization of MYCN by FOXR2 represents an alternative mechanism to MYCN amplification to increase MYCN protein levels. As such, FOXR2 expression identifies another subset of neuroblastoma patients with unfavorable clinical outcome.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1426-1426
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1426-1426
    Abstract: Background: Heterozygous deletions within distal 1p are observed in 30% of neuroblastomas. So far, several potential 1p tumor suppressor genes have been identified. However, in this study we are focussing on 1p genes whose inactivation is not necessarily linked to tumor development but which mediate cell-essential functions, rendering cells with copy number loss vulnerable to further impairment. These genes are candidate therapeutic targets according to the concept of CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss). Methods: To identify a subset of 1p genes for which heterozygous loss may be tolerated but further reduction leads to cell death, we performed siRNA screens mediating the systematic knock-down of distal 1p genes in five 1p-deleted versus five non-1p-deleted neuroblastoma cell lines. We used 3 different siRNAs per gene in a liquid forward approach. After 96h Hoechst stained nuclei were count. Among others, a neuron-related candidate gene has been identified as a potential CYCLOPS. The candidate gene was validated by viability assays, immunocytochemistry and cell cycle analysis via FACS. Results: We identified many potential CYCLOPS genes mapping on the distal end of chromosome arm 1p. One of these genes is involved in neuronal and embryonic development and has been further validated. Knock-down of the gene impaired cell viability in 1p-deleted cell lines but did not in 1p-non-deleted cells. G1/G0 phase arrest with corresponding S phase decrease was observed in both 1p-deleted and 1p-non-deleted cells. Additionally, neurite-like outgrowth could be observed in 1p-non-deleted cells indicating an induction of differentiation. Conclusion: This study identified a candidate CYCLOPS gene in neuroblastoma. Heterozygous deletions of chromosome arm 1p are also frequently observed in other cancers including melanoma, colorectal and breast cancer. We hypothesize that this proof-of-principle opens a new therapeutic window for tumors harbouring a heterozygous deletion of our candidate gene or other cell essential genes on chromosome arm 1p. Citation Format: Alica Torkov, Kai-Oliver Henrich, Chunxuan Shao, Moritz Gartlgruber, Frank Westermann. Blinding the CYCLOPS - Cancer vulnerabilities unveiled by genomic loss [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1426. doi:10.1158/1538-7445.AM2017-1426
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2012
    In:  Cancer Research Vol. 72, No. 23 ( 2012-12-01), p. 6079-6088
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 23 ( 2012-12-01), p. 6079-6088
    Abstract: A broad range of human malignancies is associated with nonrandom 1p36 deletions, suggesting the existence of tumor suppressors encoded in this region. Evidence for tumor-specific inactivation of 1p36 genes in the classic “two-hit” manner is scarce; however, many tumor suppressors do not require complete inactivation but contribute to tumorigenesis by partial impairment. We discuss recent data derived from both human tumors and functional cancer models indicating that the 1p36 genes CHD5, CAMTA1, KIF1B, CASZ1, and miR-34a contribute to cancer development when reduced in dosage by genomic copy number loss or other mechanisms. We explore potential interactions among these candidates and propose a model where heterozygous 1p36 deletion impairs oncosuppressive pathways via simultaneous downregulation of several dosage-dependent tumor suppressor genes. Cancer Res; 72(23); 6079–88. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 9 ( 2010-05-01), p. 3791-3802
    Abstract: The cell cycle regulator, SKP2, is overexpressed in various cancers and plays a key role in p27 degradation, which is involved in tumor cell dedifferentiation. Little is known about the mechanisms leading to impaired SKP2 transcriptional control in tumor cells. We used neuroblastoma as a model to study SKP2 regulation because SKP2 transcript levels gradually increase with aggressiveness of neuroblastoma subtypes. The highest SKP2 levels are found in neuroblastomas with amplified MYCN. Accordingly, we found 5.5-fold (range, 2–9.5) higher SKP2 core promoter activity in MYCN-amplified cells. Higher SKP2 core promoter activity in MYCN-amplified cells is mediated through a defined region at the transcriptional start site. This region includes a specific E2F-binding site that makes SKP2 activation largely independent of mitogenic signals integrated through the SP1/ELK-1 site. We show by chromatin immunoprecipitation that SKP2 activation through the transcriptional start site in MYCN-amplified cells is associated with the low abundance of pRB-E2F1 complexes bound to the SKP2 promoter. Transcriptional control of SKP2 through this regulatory mechanism can be reestablished in MYCN-amplified cells by restoring pRB activity using selective small compound inhibitors of CDK4. In contrast, doxorubicin or nutlin-3 treatment—both leading to p53-p21 activation—or CDK2 inhibition had no effect on SKP2 regulation in MYCN-amplified cells. Together, this implies that deregulated MYCN protein levels in MYCN-amplified neuroblastoma cells activate SKP2 through CDK4 induction, abrogating repressive pRB-E2F1 complexes bound to the SKP2 promoter. Cancer Res; 70(9); 3791–802. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 8_Supplement ( 2010-04-15), p. 568-568
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 568-568
    Abstract: The cell cycle regulator, SKP2, is overexpressed in various cancers, and plays a key role in p27 degradation, which is involved in tumor cell dedifferentiation. Little is known about the mechanisms leading to impaired SKP2 transcriptional control in tumor cells. We used neuroblastoma as a model to study SKP2 regulation because SKP2 transcript levels gradually increase with aggressiveness of neuroblastoma subtypes. Highest SKP2 levels are found in neuroblastomas with amplified MYCN. Accordingly, we found 5.5-fold (range 2-9.5) higher SKP2 core promoter activity in MYCN-amplified cells. Higher SKP2 core promoter activity in MYCN-amplified cells is mediated through a defined region at the transcriptional start site (TSSR). This region includes a specific E2F-binding site that makes SKP2 activation largely independent of mitogenic signals integrated through the SP1/ELK-1 site. We demonstrate by chromatin immunoprecipitation that SKP2 activation through the TSSR in MYCN-amplified cells is associated with low abundance of pRB-E2F1 complexes bound to the SKP2 promoter. Transcriptional control of SKP2 via this regulatory mechanism can be re-established in MYCN-amplified cells by restoring pRB activity using selective small compound inhibitors of CDK4. In contrast, doxorubicin or nutlin-3 treatment - both leading to p53-p21 activation - or CDK2 inhibition had no effect on SKP2 regulation in MYCN-amplified cells. Together, this implies that deregulated MYCN protein levels in MYCN-amplified neuroblastoma cells activate SKP2 through CDK4 induction, abrogating repressive pRB-E2F1 complexes bound to the SKP2 promoter. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 568.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. LB-083-LB-083
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. LB-083-LB-083
    Abstract: Background Neuroblastoma (NB) is a pediatric tumor derived from precursor cells of the sympathetic nervous system. NB accounts for 12% of all childhood cancer deaths with ~50% high-risk cases which frequently harbor amplified proto-oncogene MYCN. Evidence accumulates that epigenetic deregulation, including aberrant DNA methylation in high-risk disease or oncogene activation by enhancer hijacking, plays a prominent role in NB. The present study applies a comprehensive approach integrating chromatin modification data with genomic and expression data to elucidate NB subtype specific super-enhancer (SE) landscapes and core regulatory circuitries (CRCs) consisting of lineage-specific interconnected loops of SE-driven, auto-regulatory master transcription factors. Methods Chromatin immunoprecipitation sequencing (ChIP-seq) of histone 3 lysine 27 acetylation (H3K27ac) was used to identify active enhancer elements in 23 primary NBs. A validation cohort consisting of 16 NB cell lines and two human neural crest cell lines was used. ChIPmentation was applied to validate predicted transcription factor (TF) binding events. Circular chromatin conformation capture sequencing (4C-seq) was used to assay physical promoter-enhancer interactions. Results Unsupervised clustering of 23 primary NBs according to H3K27ac signal intensity at the most variable SEs (genome-wide) revealed two main subgroups, MYCN-amplified (n = 8) and MYCN single copy tumors (n = 15), with distinctive activity patterns. Calling of CRCs in the 23 primary NBs yielded a core set of NB master TFs (CRC TFs). Amongst the top ten of them are HAND2, PHOX2B and MYCN, all of which are implicated in NB biology and playing essential roles in the development of the sympathetic nervous system. In line with this, gene ontology analyses of the top 50 CRC TFs converge on biological processes like development of neural crest cells, sympathetic nervous system and peripheral nervous system neurons. ChIPmentation analyses of selected CRC TFs confirmed auto-binding to their assigned SEs and those of other CRC TFs in their respective network. Interactions between promoters and SEs of selected CRC TFs were verified via 4C-seq. Intriguingly, expression analysis of the top 50 CRC TFs in a cohort of 498 primary NBs revealed that less than 20% of the CRC TFs are up-regulated in MYCN-amplified tumors while the remaining 80% are down-regulated in that subgroup. This suggests a superordinate role of MYCN in differentially orchestrating NB master TFs. Conclusion The study identifies the core set of NB master transcription factors and assigns established NB regulators like HAND2, PHOX2B and MYCN to well-defined CRCs. It reveals an association of MYCN amplification with the global SE landscape of primary NBs and suggests a role for MYCN in differentially controlling subsets of CRC TFs and their networks. Specific targeting of the SE-dependent CRC networks may open a therapeutic window for epigenetic drugs, including BET inhibitors, CDK7 or EZH2 inhibition, in NB. Citation Format: Moritz Gartlgruber, Daniel Dreidax, Daria Doncevic, Sebastian Steinhauser, Stefan Gröschel, Kai Oliver Henrich, Young-Gyu Park, Carl Herrmann, Frank Westermann. Core transcriptional regulatory circuitries in neuroblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-083. doi:10.1158/1538-7445.AM2017-LB-083
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Letters, Elsevier BV, Vol. 285, No. 1 ( 2009-11), p. 99-107
    Type of Medium: Online Resource
    ISSN: 0304-3835
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 195674-7
    detail.hit.zdb_id: 2004212-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...