GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 23 ( 2017-12), p. 9773-9782
    Abstract: In a comment on a 2017 paper by Cheung et al., Kravtsov states that the results of Cheung et al. are invalidated by errors in the method used to estimate internal variability in historical surface temperatures, which involves using the ensemble mean of simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to estimate the forced signal. Kravtsov claims that differences between the forced signals in the individual models and as defined by the multimodel ensemble mean lead to errors in the assessment of internal variability in both model simulations and the instrumental record. Kravtsov proposes a different method, which instead uses CMIP5 models with at least four realizations to define the forced component. Here, it is shown that the conclusions of Cheung et al. are valid regardless of whether the method of Cheung et al. or that of Kravtsov is applied. Furthermore, many of the points raised by Kravtsov are discussed in Cheung et al., and the disagreements of Kravtsov appear to be mainly due to a misunderstanding of the aims of Cheung et al.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 24 ( 2016-12-15), p. 8931-8948
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 24 ( 2016-12-15), p. 8931-8948
    Abstract: A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Physical Oceanography Vol. 39, No. 1 ( 2009-01-01), p. 220-233
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 39, No. 1 ( 2009-01-01), p. 220-233
    Abstract: In this paper it is proposed that the stochastic excitation of a multidecadal internal ocean mode is at the origin of the multidecadal sea surface temperature variability in the North Atlantic. The excitation processes of the spatial sea surface temperature pattern associated with this multidecadal mode within an idealized three-dimensional model are studied by adding noise to the surface heat flux forcing. In the regime where the internal mode is damped, the amplitude of its sea surface temperature pattern depends on the type of noise forcing applied. While the mode is weakly excited by white noise, only the introduction of spatial and temporal coherence in the forcing, with characteristics of the North Atlantic Oscillation in particular, causes the amplitude of the variability to increase to levels comparable to those observed. Within this idealized model the physical mechanism of the excitation can be determined: the presence of the noise rectifies the background state and consequently changes the growth factor of the internal mode.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 14 ( 2018-07-15), p. 5681-5693
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 14 ( 2018-07-15), p. 5681-5693
    Abstract: In this paper we examine various options for the calculation of the forced signal in climate model simulations, and the impact these choices have on the estimates of internal variability. We find that an ensemble mean of runs from a single climate model [a single model ensemble mean (SMEM)] provides a good estimate of the true forced signal even for models with very few ensemble members. In cases where only a single member is available for a given model, however, the SMEM from other models is in general out-performed by the scaled ensemble mean from all available climate model simulations [the multimodel ensemble mean (MMEM)] . The scaled MMEM may therefore be used as an estimate of the forced signal for observations. The MMEM method, however, leads to increasing errors further into the future, as the different rates of warming in the models causes their trajectories to diverge. We therefore apply the SMEM method to those models with a sufficient number of ensemble members to estimate the change in the amplitude of internal variability under a future forcing scenario. In line with previous results, we find that on average the surface air temperature variability decreases at higher latitudes, particularly over the ocean along the sea ice margins, while variability in precipitation increases on average, particularly at high latitudes. Variability in sea level pressure decreases on average in the Southern Hemisphere, while in the Northern Hemisphere there are regional differences.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 39, No. 9 ( 2012-05), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Geophysical Research Letters Vol. 40, No. 21 ( 2013-11-16), p. 5710-5715
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 40, No. 21 ( 2013-11-16), p. 5710-5715
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Geophysical Research Letters Vol. 46, No. 4 ( 2019-02-28), p. 2232-2241
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 46, No. 4 ( 2019-02-28), p. 2232-2241
    Abstract: Interdecadal Pacific Oscillation and Atlantic Multidecadal Variability are weaker than observed in state‐of‐the‐art models Correlations between these patterns and global temperature changes are identified, but these too are weaker in models Models that exhibit stronger variability in these patterns also exhibit stronger relationships between the patterns and global temperature
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 20 ( 2015-10-15), p. 8184-8202
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 20 ( 2015-10-15), p. 8184-8202
    Abstract: Separating low-frequency internal variability of the climate system from the forced signal is essential to better understand anthropogenic climate change as well as internal climate variability. Here both synthetic time series and the historical simulations from phase 5 of CMIP (CMIP5) are used to examine several methods of performing this separation. Linear detrending, as is commonly used in studies of low-frequency climate variability, is found to introduce large biases in both amplitude and phase of the estimated internal variability. Using estimates of the forced signal obtained from ensembles of climate simulations can reduce these biases, particularly when the forced signal is scaled to match the historical time series of each ensemble member. These so-called scaling methods also provide estimates of model sensitivities to different types of external forcing. Applying the methods to observations of the Atlantic multidecadal oscillation leads to different estimates of the phase of this mode of variability in recent decades.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Physical Oceanography Vol. 40, No. 11 ( 2010-11-01), p. 2496-2510
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 40, No. 11 ( 2010-11-01), p. 2496-2510
    Abstract: Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change has indicated that Arctic Ocean variability on these time scales is associated with changes in basin-wide salinity patterns. In this paper the internal modes of variability in an idealized Arctic Basin are determined by considering the stability of salinity-driven flows. An internal ocean mode with a multidecadal time scale is found, with a spatial pattern similar to that obtained in the analysis of the CM2.1 results. The modes propagate as a “saline Rossby wave” induced by the background salinity gradient.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Climate Vol. 30, No. 12 ( 2017-06), p. 4763-4776
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 12 ( 2017-06), p. 4763-4776
    Abstract: Low-frequency internal climate variability (ICV) plays an important role in modulating global surface temperature, regional climate, and climate extremes. However, it has not been completely characterized in the instrumental record and in the Coupled Model Intercomparison Project phase 5 (CMIP5) model ensemble. In this study, the surface temperature ICV of the North Pacific (NP), North Atlantic (NA), and Northern Hemisphere (NH) in the instrumental record and historical CMIP5 all-forcing simulations is isolated using a semiempirical method wherein the CMIP5 ensemble mean is applied as the external forcing signal and removed from each time series. Comparison of ICV signals derived from this semiempirical method as well as from analysis of ICV in CMIP5 preindustrial control runs reveals disagreement in the spatial pattern and amplitude between models and instrumental data on multidecadal time scales ( 〉 20 yr). Analysis of the amplitude of total variability and the ICV in the models and instrumental data indicates that the models underestimate ICV amplitude on low-frequency time scales ( 〉 20 yr in the NA; 〉 40 yr in the NP), while agreement is found in the NH variability. A multiple linear regression analysis of ICV in the instrumental record shows that variability in the NP drives decadal-to-interdecadal variability in the NH, whereas the NA drives multidecadal variability in the NH. Analysis of the CMIP5 historical simulations does not reveal such a relationship, indicating model limitations in simulating ICV. These findings demonstrate the need to better characterize low-frequency ICV, which may help improve attribution and decadal prediction.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...