GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2476-2476
    Abstract: Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix 〉 BFU-E 〉 CFU-Meg 〉 CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Stem Cells and Development, Mary Ann Liebert Inc, Vol. 24, No. 8 ( 2015-04-15), p. 927-937
    Type of Medium: Online Resource
    ISSN: 1547-3287 , 1557-8534
    Language: English
    Publisher: Mary Ann Liebert Inc
    Publication Date: 2015
    detail.hit.zdb_id: 2142305-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Stem Cell Reviews and Reports Vol. 12, No. 1 ( 2016-2), p. 121-128
    In: Stem Cell Reviews and Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2016-2), p. 121-128
    Type of Medium: Online Resource
    ISSN: 1550-8943 , 1558-6804
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2495579-6
    detail.hit.zdb_id: 2197218-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Ovarian Research, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2014-12)
    Type of Medium: Online Resource
    ISSN: 1757-2215
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2455679-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Prevention Research, American Association for Cancer Research (AACR), Vol. 15, No. 3 ( 2022-03-01), p. 151-160
    Abstract: Several ovarian cancer susceptibility genes have been discovered, but more are likely to exist. In this study, we aimed to analyze knowledge-based selected genes, that is, BARD1, PRDM9, RCC1, and RECQL, in which pathogenic germline variants have been reported in patients with breast and/or ovarian cancer. As deep sequencing of DNA samples remains costly, targeted next-generation sequencing of DNA pools was utilized to screen the exons of BARD1, PRDM9, RCC1, and RECQL in approximately 400 Polish ovarian cancer cases. A total of 25 pools of 16 samples (including several duplicated samples with known variants) were sequenced on the NovaSeq6000 and analyzed with SureCall (Agilent) application. The set of variants was filtrated to exclude spurious variants, and, subsequently, the identified rare genetic variants were validated using Sanger sequencing. No pathogenic mutation was found within the analyzed cohort of patients with ovarian cancer. Validation genotyping of filtered rare silent and missense variants revealed that the majority of them were true alterations, especially those with a higher mutation quality value. The high concordance (R2 = 0.95) of population allele frequency for 44 common SNPs in the European control population (gnomAD) and our experiment confirmed the reliability of pooled sequencing. Mutations in BARD1, PRDM9, RCC1, and RECQL do not contribute substantially to the risk of ovarian cancer. Pooled DNA sequencing is a cost-effective and reliable method for the initial screening of candidate genes; however, it still requires validation of identified rare variants. Prevention Relevance: BARD1, PRDM9, RCC1, and RECQL are not high/moderate-risk ovarian cancer susceptibility genes. Pooled sequencing is a reliable and cost-effective method to detect rare variants in candidate genes.
    Type of Medium: Online Resource
    ISSN: 1940-6207 , 1940-6215
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2422346-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 22 ( 2015-08-07), p. 18819-18828
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4072-4072
    Abstract: Background: The existence in adult tissues of developmentally early stem cells with broader specification potential may suggest the presence of embryonic primordial germ cell (PGC) remnants in post-natal organs. To support this small, quiescent stem cells (VSELs) that express several markers of PGCs reside in adult murine bone marrow (BM) (Leukemia 2010;24:1450), and like PGCs, are kept quiescent by erasure of imprinting on paternally imprinted genes (Leukemia 2009;23:2042). As reported hematopoietic stem/progenitor cells (HSPCs) can become specified from a population of migrating PGCs isolated from embryos (Blood 1995;86:463) as well as from adult bone marrow VSELs (Leukemia 2011;25,1278). In support of this intriguing possibility, HSPCs and PGCs are both highly migratory populations of stem cells, and specification of the first primitive HSPCs in yolk sac blood islands as well as the origin of definitive HSPCs in the aorta-gonado-mesonephros region are chronologically and anatomically correlated with the developmental migration of PGCs in extra- and intra-embryonic tissues on their way to the genital ridges. Hypothesis: Based on these observations, we have hypothesized that PGC-derived cells as well as HSPCs share some common receptors, and we tested the expression of gonadotropic hormone receptors (GHR) and erythropoietin receptor (EpoR) on HSPCs and PGC-derived cells, respectively. Materials and Methods. We employed RT-PCR studies to evaluate the expression of GHR on normal and malignant HSPCs, whereas we evaluated the expression of EpoR on teratocarcinoma and ovarian cancer cell lines. The functionality of these receptors was tested by chemotaxis, adhesion, and proliferation assays, and we performed signal transduction studies employing specific ligands for gonadal receptors to stimulate HSPCs and erythropoietin (EPO) to stimulate germline-derived cells. Results. We observed the expression of functional FSH, LH, PRL, estrogen, and androgen receptors on normal murine and human HSPCs and in leukemia cell lines. At the same time, we observed the presence of functional EpoRs on murine and human teratocarcinoma cells and ovarian cancer cell lines. Conclusions. Our data provide further evidence for the existence of a developmental link between germline and hematopoiesis and shed new light on the developmental hierarchy of the stem cell compartment in adult tissues and possibility that some malignancies may develop from embryonic remnants. These observations also have important practical implications: i) pituitary gonadal hormones could be employed in selected cases of BM failure to stimulate hematopoiesis and ii) EPO treatment (e.g., because of anemia after chemotherapy) should be avoided in patients with germline malignancies. Citation Format: Malwina Suszynska, Katarzyna Mierzejewska, Agata Poniewierska-Baran, Ahmed Abdelbasit Ismail, Gabriela Schneider, Pranesh Gunjal, Janina Ratajczak, Sham S. Kakar, Magda Kucia, Mariusz Z. Ratajczak. Embryonic rest hypothesis of cancer development revisited: functional gonadotropic hormone receptors are expressed by normal and malignant hematopoietic cells and functional erythropoietin receptor is expressed by germline-derived tumors. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4072. doi:10.1158/1538-7445.AM2015-4072
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 2392-2392
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2392-2392
    Abstract: Background . Almost 20 years ago, a "mystery" population of small stem cells with many of the phenotypic characteristics attributed to resting hematopoietic stem cells was identified in murine bone marrow (BM) (Stem Cells 1998, 16, 38-48). These cells expressed high levels of Sca-1, H-2K, and CD38 and low levels of Thy-1.1; they expressed CD45 antigen but were lineage-negative (lin-) for other hematopoietic markers. These cells incorporated only low levels of Rh123 and were resistant to the cytotoxic effects of 5-fluorouracil. The only phenotypic characteristic that distinguishes these cells from Sca-1+, Lin-, CD45+ Thy-1.1low long-term-reconstituting hematopoietic stem cell population is the lack of c-kit expression. In sum, this "mystery" population of small Sca-1+, lin-, c-kit- but CD45+ stem cells do not respond to hematopoietic growth factors in vitro, form in vivo spleen colonies, or reconstitute lethally irradiated mice. With our discovery of Sca-1+ Lin- CD45- very small embryonic-like stem cells (VSELs) in murine bone marrow (BM) (Leukemia 2006, 20, 857-869), we became interested in this "mystery" population of stem cells. VSELs, like the "mystery" population, are c-kit - and, if freshly isolated from BM, do not show any hematopoietic activity in standard in vitro and in vivo assays. In order to become specified to hematopoiesis, they need to be expanded over an OP-9 stromal support (Exp Hematol 2011;39:225-237). Hypothesis. Since (1) very small CD45- VSELs can be specified in OP-9 co-cultures into long-term reconstituting CD45+ HSCs, (2) the size of the "mystery" population is intermediate between VSELs and HSCs, and (3) VSELs and HSCs differ in cell surface receptor expression, we hypothesized that the "mystery" population is a missing developmental intermediate between VSELs and HSCs. Materials and Methods . Multicolor FACS analysis was employed to compare size and expression of surface markers between murine BM HSCs, the unknown population of stem cells, and VSELs. Next, the populations of small Sca-1+ H2-K+ lin- c-kit+ CD38+/- CD45+ cells (HSCs), smaller Sca-1+ H-2K+ lin- c-kit- CD38+ CD45+ cells (the "mystery" population), and very small in size Sca-1+ H-2K+ lin- c-kit- CD38+/- CD45- cells (VSELs) were purified by FACS from BM (Figure 1) and tested for in vitro colony formation. All these cell populations were primed/expanded over OP-9 support and subsequently evaluated for their hematopoietic potential after passaging in consecutive methylocellulose cultures (passages 1-4). RQ-PCR analysis was employed for detection of pluripotency marker expression as well as hematopoietic gene expression. Results . We found that, in contrast to HSCs, neither freshly sorted stem cells from the "mystery" BM population nor, as expected, VSELs grew hematopoietic colonies in standard methylcellulose cultures. This was also an important step in excluding contamination of our sorted populations with clonogenic cells. We also found that, while VSELs highly expressed Oct-4, this transcription factor was expressed at very low levels in the "mystery" population and was not detectable in HSCs. The most important observation was that the "mystery" population of stem cells became specified in OP-9-supported cultures into clonogenic HSPCs, and this specification occurred faster than the delayed specification of VSELs. VSELs first became enriched for HSPCs after acquiring CD45 antigen expression. Conclusions . Based on the results presented, we propose that the "mystery" population in murine BM is a population of stem cells intermediate between the most primitive population of BM-residing stem cells (VSELs) and the population of stem cells already specified to lympho-hematopoietic development (HSCs). Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2448-2448
    Abstract: Background . Hematopoietic stem/progenitor cells (HSPCs) express the chemokine receptor CXCR4 and the very late antigen 4 receptor (VLA-4, also known as alpha4beta1 integrin) on their cell surface and are retained in bone marrow (BM) niches by interaction of these receptors with their respective ligands, α-chemokine stromal-derived growth factor 1 (SDF-1) and vascular adhesion molecule 1 (VCAM-1, also known as CD106), which are expressed by cells in the BM microenvironment (e.g., osteoblasts and fibroblasts). Mobilization studies employing small molecule antagonists of CXCR4 or VLA-4 indicate the importance of both axes in retention of HSPCs in the BM microenvironment. Furthermore, it has been postulated that a crucial role in the mobilization process plays activation of a proteolytic microenvironment (J Clin Invest. 2003;111:187-96) and complement cascade (ComC) (Blood 2004;103:2071-8) in the BM microenvironment. However, to our surprise no attention has been paid so far to the role of lipolytic enzymes. Phospholipase C (PLC) is an enzyme released by neutrophils that cleaves the phosphoglycerol bond in glycosylphospahtidylinositol (GPI anchor), a glycolipid that is attached to the C-termini of several important proteins during posttranslational modification. GPI-linked proteins are thought to be preferentially located in lipid rafts. The most important GPI-anchored proteins include VCAM-1, complement inhibitors CD55 and CD59, and uPAR. We have reported that for retention of HSPCs in BM, both CXCR4 and VLA-4 have to be incorporated into membrane lipid rafts (Blood 2005;105:40-48). Hypothesis . Based on our previous observation that the HSPCs of paroxysmal nocturnal hemoglobinuria patients show defective retention in BM due to lack of functional GPI anchor (Leukemia 2012; 26:1722—5) we have hypothesized that PLC in normal BM may facilitate mobilization of HSPCs by perturbing expression of GPI anchor, which is so crucial for proper retention of HSPCs in BM. Materials and Methods . PLC activity has been measured by ELISA in the BM of mobilized mice as well in conditioned media from neutrophils exposed to several pro-mobilizing factors (G-CSF, AMD3100, C3a, C5a, desArgC5a, and S1P). We also tested the effect of PLC on the expression of VCAM-1 on BM-derived stroma and CD55 and CD59 antigens on BM mononuclear cells. The effect of PLC on incorporation of CXCR4 and VLA-4 into membrane lipid rafts has been studied by confocal microscopy employing murine Sca-1+ and human CD34+ cells. Here, to test our hypothesis, mobilization studies using AMD3100 and G-CSF have been performed in PLCβ2-KO (PLCβ2–/–) mice and their wild type (WT) littermates. Results . Our data indicate that the PLC level increases in BM during mobilization and is released from neutrophils in response to several pro-mobilization factors (G-CSF, AMD3100, C3a, C5a, desArgC5a, and S1P). PLC efficiently cleaves VCAM-1 expressed on BM stromal cells and thus perturbs the VCAM-1–VLA4 interaction as well as removes CD55 and CD59 from BM mononuclear cells, which enhances the pro-mobilizing effects of the ComC. PLC also inhibits lipid raft formation on HSPCs and by this means impairs the normal BM-retention function of CXCR4 and VLA-4. Finally, what is most important, we observed a mobilization defect in PLCβ2–/– mice, as evaluated by the number of mobilized leucocytes, SKL cells, and CFU-GM. Conclusions . We have established for the first time that, in addition to proteolytic enzymes, lipolytic enzymes, including LPC, are upregulated in the BM microenvironment, and that PLC promotes mobilization of HSPCs by perturbing the BM-retention function of GPI-anchored proteins. These data support an important role for GPI anchor-dependent proteins in the retention of HSPCs in BM niches. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Informa UK Limited ; 2014
    In:  Expert Opinion on Therapeutic Targets Vol. 18, No. 1 ( 2014-01), p. 95-107
    In: Expert Opinion on Therapeutic Targets, Informa UK Limited, Vol. 18, No. 1 ( 2014-01), p. 95-107
    Type of Medium: Online Resource
    ISSN: 1472-8222 , 1744-7631
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2014
    detail.hit.zdb_id: 2028202-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...