GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 21
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 12 ( 2022-06-12), p. 6568-
    Abstract: Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    In: Journal of Hematology & Oncology, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2021-12)
    Abstract: During acute myeloid leukemia (AML) growth, the bone marrow (BM) niche acquires significant vascular changes that can be offset by therapeutic blast cytoreduction. The molecular mechanisms of this vascular plasticity remain to be fully elucidated. Herein, we report on the changes that occur in the vascular compartment of the FLT3-ITD+ AML BM niche pre and post treatment and their impact on leukemic stem cells (LSCs). Methods BM vasculature was evaluated in FLT3-ITD+ AML models ( Mll PTD/WT / Flt3 ITD/ITD mouse and patient-derived xenograft) by 3D confocal imaging of long bones, calvarium vascular permeability assays, and flow cytometry analysis. Cytokine levels were measured by Luminex assay and miR-126 levels evaluated by Q-RT-PCR and miRNA staining. Wild-type (wt) and  Mll PTD/WT / Flt3 ITD/ITD mice with endothelial cell (EC) miR-126 knockout or overexpression served as controls. The impact of treatment-induced BM vascular changes on LSC activity was evaluated by secondary transplantation of BM cells after administration of tyrosine kinase inhibitors (TKIs) to Mll PTD/WT / Flt3 ITD/ITD mice with/without either EC miR-126 KO or co-treatment with tumor necrosis factor alpha (TNFα) or anti-miR-126 miRisten. Results In the normal BM niche, CD31 + Sca-1 high ECs lining arterioles have miR-126 levels higher than CD31 + Sca-1 low ECs lining sinusoids. We noted that during FLT3-ITD+ AML growth, the BM niche lost arterioles and gained sinusoids. These changes were mediated by TNFα, a cytokine produced by AML blasts, which induced EC miR-126 downregulation and caused depletion of CD31 + Sca-1 high ECs and gain in CD31 + Sca-1 low ECs. Loss of miR-126 high ECs led to a decreased EC miR-126 supply to LSCs, which then entered the cell cycle and promoted leukemia growth. Accordingly, antileukemic treatment with TKI decreased the BM blast-produced TNFα and increased miR-126 high ECs and the EC miR-126 supply to LSCs. High miR-126 levels safeguarded LSCs, as shown by more severe disease in secondary transplanted mice. Conversely, EC miR-126 deprivation via genetic or pharmacological EC miR-126 knock-down prevented treatment-induced BM miR-126 high EC expansion and in turn LSC protection. Conclusions Treatment-induced CD31 + Sca-1 high EC re-vascularization of the leukemic BM niche may represent a LSC extrinsic mechanism of treatment resistance that can be overcome with therapeutic EC miR-126 deprivation. Graphic abstract
    Type of Medium: Online Resource
    ISSN: 1756-8722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2429631-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 2 ( 2022-02), p. 492-506
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 10673-10674
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 2263-2264
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 362-363
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    In: Blood, American Society of Hematology, Vol. 124, No. 4 ( 2014-07-24), p. 579-589
    Abstract: Akt/FLNA/TIF-90 signaling regulates rRNA synthesis in acute myelogenous leukemia cells. Direct targeting of Akt has potential therapeutic applications in acute myelogenous leukemia treatment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2661-2661
    Abstract: INTRODUCTION: Although the treatment of patients with multiple myeloma (MM) has dramatically improved, those with high-risk characteristics, including the deletion or mutation of the master tumor suppressor gene TP53 on chromosome 17, experience limited survival. OM301 is a synthetic polypeptide containing the p53TA (transactivation) domain, which prevents p53 degradation through inhibition of MDM2. Here, we demonstrate that OM301 has strong anti-MM activity in vitro and in vivo. RESULTS: We first assessed the cytotoxic effects of OM301 in MM cell lines with varying TP53 status (TP53 wild type: MM.1S, H929; TP53 mutated/null: L363, RPMI-8226, U266, JJN3, KMS11) and found that OM301 exerts significant cytotoxic effects at a concentration of ~5 µM in all cell lines we tested, while it was minimally toxic to human peripheral blood mononuclear cells. Next, using immunocompromised NSG mice models injected with MM.1S, we determined the in vivo efficacy of OM301 in three different studies. Many potent anticancer agents, particularly of peptide origin, show prominent anti-tumor effects but fail to sustain similar effects when given intraperitoneally because of poor absorption, distribution, metabolism and excretion properties. OM301 at an intraperitoneal dose of 20 mg/kg/body weight twice a day induced significant reduction in tumor size with respect to vehicle control, suggesting the stability of OM301 without any loss of its activity (n=7, p & lt;0.0001). Accordingly, we investigated its effect in a disseminated NSG/MM.1S model and found that it significantly increased survival (p & lt;0.0001) (see Figure). Because OM301 was designed to simulate the p53 interaction domain with MDM2, we first determined its effect on p53-MDM2 crosstalk using a p53-MDM2 co-Immunoprecipitation (co-IP) assay and compared it with effects from Nutlin-3a, a known inhibitor of p53-MDM2. The co-IP data showed that, unlike Nutlin-3a, OM301 does not inhibit the p53-MDM2 interaction. Thus, to confirm our findings, we first overexpressed MDM2 in HeLa cells, and, using MDM2-IP and p53-MDM2 co-IP, found similar observations. Additionally, OM301 also failed to induce endogenous upregulation of genes activated by p53, such as MDM2 and p21, as opposed to results from Nutlin-3a. RNA sequencing data also showed a distinctive OM301signature, as compared to Nutlin-3a in MM cells. While treatment of Nutlin-3a induced expression of p53-activated canonical genes, OM301-treated cells showed alterations in genes involved in inflammatory responses, c-Myc regulated genes, fatty acid metabolism, glucose metabolism, and oxidative phosphorylation, among others. Next, to dissect its underlying mechanism, we dual-tagged OM301 with fluorophores at the 3' and 5' ends to study its localization and its stability in MM cells. Indeed, OM301 was found to be stable and mainly localized in the cytosol. We then modified OM301 by biotinylation of its penetratin end and first verified its cytotoxic effect in different MM cell lines, which was similar to that of native OM301. The biotinylated OM301 was then immunoprecipitated using streptavidin beads. The streptavidin pull-down and subsequent proteomic analysis confirmed that OM301 does not interact with MDM2 but interacts with c-Myc and with proteins localized in mitochondria, including Bcl-2 and Bcl-2 family members such as Bclaf1, Bcl2L13, and Bcl2L1. Pull-down experiments and immunoblot analysis validated Bcl-2/OM301 interactions. To further evaluate the relative binding potentials of OM301, we performed molecular docking studies using the HPEPDOCK server (Yan et al., Nat Protoc. 2020;15:1829). Post-docking, the calculated docking scores for OM301 was -281, suggesting that OM301directly interacts with Bcl-2. Thus, we evaluated the effects of OM301 on mitochondrial function and physiology. Treatment with OM301 decreased mitochondrial membrane potential in different MM cell lines. OM301 also increased mitochondrial superoxide production and induced mitophagy and mitochondrial fission as seen by electron microscopy. CONCLUSION: Here, we report for the first time that OM301, although designed for p53-selective cells, may instead interact with Bcl-2, which in turn induces mitochondrial dysfunction, leading to cell death irrespective of their TP53 status. Our data suggest that OM301 may be a novel and effective therapeutic option for MM. Figure 1 Figure 1. Disclosures Krishnan: REGENERON: Consultancy; MAGENTA: Consultancy; BMS: Consultancy, Current equity holder in publicly-traded company, Speakers Bureau; JANSSEN: Consultancy, Research Funding; City of Hope Cancer Center: Current Employment; SANOFI: Consultancy; GSK: Consultancy; Amgen: Speakers Bureau. Marcucci: Novartis: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3501-3501
    Abstract: NF-kB signaling plays central role in the regulation of immune cell activity. The microRNA-146a-5p (miR-146a) provides negative feedback inhibition of the NF-kB pathway to prevent either excessive immunity, such as cytokine release syndrome. Low expression of miR-146a is also implicated in certain types of leukemia, especially in del(5q)-syndrome myelodysplastic and acute myeloid leukemia (MDS/AML). While miR-146a is a potential therapeutic target, the lack of efficient miRNA delivery methods limits clinical translation. We previously developed a strategy for targeted delivery of oligonucleotide therapeutics, such as siRNA, into human and mouse myeloid cells and B cells, using partly or completely phophorothioated (PS) single-stranded oligodeoxynucleotides containing CpG motif (CpG ODN). Here, we demonstrate that similar strategy, using CpG ODN optimized for targeting human monocytes, can be employed for the delivery of functional miR-146a mimic. The CpG-miR146a mimic conjugate, but not unconjugated miR-146a, was quickly internalized by target human and mouse myeloid cells, such as dendritic cells, macrophages and leukemic cells. In vitro CpG-miR146a mimic reduced protein levels of downstream targets, Irak1 and Traf6, as well as the inhibition of DNA binding and transcriptional activity of NF-kB in myeloid cells. We further verified functional activity of CpG-miR146a mimic against several models of acute inflammation. The intravenous injections of this oligonucleotide reduced myeloproliferation and excessive cytokine response to bacterial endotoxin or to live Listeria challenge in miR-146a-/- mice. Furthermore, CpG-miR146a mimic had similar anti-inflammatory effect also in a human model of cytokine release syndrome induced by CD19 chimeric antigen receptor (CAR) T-cell activity. CpG-miR146a effectively abrogated CAR T-cell induced IL-6 production by human monocytes in vitro. Finally, our studies indicated that CpG-miR146a mimic can target del(5q) MDS and AML cells in vitro and in vivo resulting in growth inhibition of MDSL and HL-60 acute myeloid leukemia. Our results suggest that CpG-miR146a strategy can be provide a new-in-class immunomodulatory therapeutics for treatment of acute inflammatory disorders, myeloproliferative diseases and myeloid leukemia. Disclosures Wang: Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding. Forman:Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding. Kortylewski:N/A: Patents & Royalties: I am an inventor on the US patent 9,976,147.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3791-3791
    Abstract: Spred1, a member of the Sprouty family of proteins and a negative regulator of RAS-MAPK signaling, is highly expressed in normal hematopoietic stem cells (HSCs) where it negatively regulates self-renewal activity. Lack of Spred1 function has been associated with aberrant hematopoiesis (Tadokoro, 2018). Spred1 knocked-out (KO) mice fed with high-fat diet develop a myeloproliferative phenotype (Tadokoro, 2018), and lower SPRED1 expression in acute myeloid leukemia associates with a poor outcome (Li, 2015; Olsson, 2014; Pasmant, 2015), suggesting a potential role of this gene as a tumor suppressor in myeloid malignancies. In CML, however, the role of Spred1 has not been fully dissected. Thus, we generated Spred1 KO CML (i.e., Spred1-/-SCLtTA/BCR-ABL) mice by crossing Spred1 KO (a gift from Dr. Yoshimura, Japan) with inducible SCLtTA/BCR-ABL CML mice. Spred1 KO mice showed increased cell cycling of BM long-term HSCs (LTHSCs; Lin-Sca-1+c-kit+Flt3-CD150+CD48-; G0: 62% vs 76%), and increased white blood cell (WBC) counts [14 vs 5.9 k/ul at 12 weeks (w) old, n=15 per group, p 〈 0.0001], as compared to wt mice. Upon B/A induction by tetracycline withdrawal, Spred1-/-SCLtTA/BCR-ABL mice had higher WBC (102.5 vs 12 k/ul at 4 w, n=15 per group, p 〈 0.0001), more pronounced splenomegaly (spleen weight: 0.28g vs 0.19g, n=4 per group, p=0.06) and a significantly shorter survival (median: 39 vs 83 days, n=23 per group, p 〈 0.0001) than Spred1 wt CML mice. In Spred1-/-SCLtTA/BCR-ABL mice, we observed a more rapid expansion of circulating mature myeloid cells (CD11b+Gr-1+ cells: 63% vs 25%, n=8 per group, p 〈 0.01) and a deeper decrease of BM LTHSCs (1,385 vs 2,164 per femur, n=5 per group, p 〈 0.01) and increase of spleen LTHSCs (27330 vs 18546, n=5 per group, p 〈 0.01) at 4 w after B/A induction compared with Spred1 wt CML mice. Further, we found a higher fraction of Spred-/-SCLtTA/BCR-ABL mice (33% vs 10%) developed lymph node enlargement, with infiltration with pro-B lymphoblastic cells (B220+CD43+CD19+IgM−) compared with Spred1 wt CML mice. Altogether these features suggested that Spred1 insufficiency accelerates CML development and evolution to more aggressive phases of the disease. Since upregulation of Spred1 reportedly disrupts vascular integrity (Fish, 2008; Wang 2008), a finding that we have also confirmed in the BM niche, in order to evaluate separately the leukemogenic effect of Spred1 expression on different compartments of the BM niche, we generated the following conditional Spred1 KO strains: Spred1flox(f)/fMxl-cre+ (Spred1 KO in HSCs, hereafter called Spred1HSCΔ/Δ), Spred1f/fTie2-cre+ [Spred1 KO in endothelial cells (ECs), hereafter called Spred1ECΔ/Δ], Spred1HSCΔ/ΔSCLtTA/BCR-ABL and Spred1ECΔ/ΔSCLtTA/BCR-ABL by crossing SCLtTA/BCR-ABL with the above Spred1 KO mice. LTHSCs from Spred1HSCΔ/ΔSCLtTA/BCR-ABL mice showed an increase in cell cycling, RAS/MAPK/ERK activity and Bcl-2 levels, and higher engraftment in recipient mice (blood: 9.7% vs 26.5% at 6w, 14.8% vs 42% at 8w, 14.7% vs 48% at 12w, n=10 per group, p 〈 0.01), compared to Spred1 wt CML LTHSCs. Spred1HSCΔ/ΔSCLtTA/BCR-ABL mice (n=15) showed enhanced leukemia progression (WBC: 19 vs 12 k/ul, p=0.004; CD11b+Gr-1+ in blood: 36% vs 25%, p=0.04 at 4 w after B/A induction) and a significantly shorter survival (median: 49.5 vs 83 days, p=0.01) compared to Spred1 wt CML mice (n=20). However, the disease in these mice appeared to be overall less aggressive than global Spred1 KO CML (i.e., Spred1-/-SCLtTA/BCR-ABL) mice (WBC: 19 vs 102 k/ul; CD11b+Gr-1+ in blood: 36 vs 63%; Survival: 49.5 vs 39 days), suggesting that Spred1 depletion in other non-hematopoietic cell compartments may also be important for leukemogenesis. In fact, Spred1ECΔ/ΔSCLtTA/BCR-ABL mice (n=8) showed enhanced leukemia progression (WBC: 26 vs 9.8 k/ul at 4 w after B/A induction, p=0.02), a trend for a reduced survival (median: 56 vs 83 days, p=0.09), and increased arteriolar vascularization, compared to Spred1 wt CML mice (n=20). Mechanistic studies on how endothelial Spred1 insufficiency co-participates in leukemogenesis are ongoing. Altogether our results support a role of Spred1 insufficiency in distinct BM niche compartments to produce a more aggressive CML phenotype, likely through different, but complementary mechanisms. Spred1 may therefore emerge as a novel target for advanced CML. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...