GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    Online-Ressource
    Online-Ressource
    Copernicus GmbH ; 2016
    In:  Atmospheric Measurement Techniques Vol. 9, No. 10 ( 2016-10-11), p. 4997-5006
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 10 ( 2016-10-11), p. 4997-5006
    Kurzfassung: Abstract. Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to  ≈  30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing  ≈  35 µg CO2 ( ≈  9.6 µgC), and stored in a stratospheric air subsampler constructed from 1∕4 in. coiled stainless steel tubing ( ≈  3 m). A small-volume extraction system was constructed that enabled  〉  99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for calibration and contamination correction purposes. The results show that the Δ14CO2 values from tropopause up to about 19(±1) km for the sample collected on 15 July was 18 ± 6 ‰ (samples 1–4), very similar to the current tropospheric value. On the other hand, Δ14CO2 values from tropopause up to about 18(±1) km for the sample collected on 16 July (samples 1–4) showed a large gradient from −62 to 21 ‰. The next sample in the profile, corresponding to about 18(±1)–22(±2) km (one sample from each profile), shows slight enrichment of 80 ± 20 ‰. The last section from both profiles, containing air from the upper stratosphere, was contaminated with pre-fill air.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2016
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 6 ( 2017-06-07), p. 2021-2043
    Kurzfassung: Abstract. Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP) and ENSCI (EN), and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI) and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 %) in the stratosphere (troposphere). Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1) differences in sensor solution composition for a single ozonesonde type, (2) differences in ozonesonde type for a single sensor solution composition, and (3) the World Meteorological Organization's (WMO) and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures  ≥  30 hPa, and thus the transfer function can be characterized as a simple ratio of the less sensitive to the more sensitive method. This ratio is 0.96 for both solution concentration and ozonesonde type. The ratios differ at pressures 〈 30 hPa such that OZ0. 5%/OZ1. 0 % =  0. 90 + 0. 041 ⋅ log10(p) and OZSciencePump/OZENSCI =  0. 764 + 0. 133 ⋅ log10(p) for p in units of hPa. For the manufacturer-recommended solution concentrations the dispersion of the ratio (SP-1.0 / EN-0.5 %), while significant, is generally within 3 % and centered near 1.0, such that no changes are recommended. For stations which have used multiple ozonesonde types with solution concentrations different from the WMO's and manufacturer's recommendations, this work suggests that a reasonably homogeneous data set can be created if the quantitative relationships specified above are applied to the non-standard measurements. This result is illustrated here in an application to the Nairobi data set.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2017
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 12 ( 2018-11-30), p. 6409-6417
    Kurzfassung: Abstract. The hypothesis whether turbulence within the passive microwave sounders field of view can cause significant biases in radiative transfer modeling at the 183 GHz water vapor absorption band is tested. A novel method to calculate the effects of turbulence in radiative transfer modeling is presented. It is shown that the turbulent nature of water vapor in the atmosphere can be a critical component of radiative transfer modeling in this band. Radiative transfer simulations are performed comparing a uniform field with a turbulent one. These comparisons show frequency dependent biases which can be up to several kelvin in brightness temperature. These biases can match experimentally observed biases, such as the ones reported in Brogniez et al. (2016). Our simulations show that those biases could be explained as an effect of high-intensity turbulence in the upper troposphere. These high turbulence phenomena are common in clear air turbulence, storm or cumulus cloud situations.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2018
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 10, No. 3 ( 2017-03-27), p. 1261-1289
    Kurzfassung: Abstract. We present a global distribution of surface methane (CH4) emission estimates for 2000–2012 derived using the CarbonTracker Europe-CH4 (CTE-CH4) data assimilation system. In CTE-CH4, anthropogenic and biospheric CH4 emissions are simultaneously estimated based on constraints of global atmospheric in situ CH4 observations. The system was configured to either estimate only anthropogenic or biospheric sources per region, or to estimate both categories simultaneously. The latter increased the number of optimizable parameters from 62 to 78. In addition, the differences between two numerical schemes available to perform turbulent vertical mixing in the atmospheric transport model TM5 were examined. Together, the system configurations encompass important axes of uncertainty in inversions and allow us to examine the robustness of the flux estimates. The posterior emission estimates are further evaluated by comparing simulated atmospheric CH4 to surface in situ observations, vertical profiles of CH4 made by aircraft, remotely sensed dry-air total column-averaged mole fraction (XCH4) from the Total Carbon Column Observing Network (TCCON), and XCH4 from the Greenhouse gases Observing Satellite (GOSAT). The evaluation with non-assimilated observations shows that posterior XCH4 is better matched with the retrievals when the vertical mixing scheme with faster interhemispheric exchange is used. Estimated posterior mean total global emissions during 2000–2012 are 516 ± 51 Tg CH4 yr−1, with an increase of 18 Tg CH4 yr−1 from 2000–2006 to 2007–2012. The increase is mainly driven by an increase in emissions from South American temperate, Asian temperate and Asian tropical TransCom regions. In addition, the increase is hardly sensitive to different model configurations ( 〈  2 Tg CH4 yr−1 difference), and much smaller than suggested by EDGAR v4.2 FT2010 inventory (33 Tg CH4 yr−1), which was used for prior anthropogenic emission estimates. The result is in good agreement with other published estimates from inverse modelling studies (16–20 Tg CH4 yr−1). However, this study could not conclusively separate a small trend in biospheric emissions (−5 to +6.9 Tg CH4 yr−1) from the much larger trend in anthropogenic emissions (15–27 Tg CH4 yr−1). Finally, we find that the global and North American CH4 balance could be closed over this time period without the previously suggested need to strongly increase anthropogenic CH4 emissions in the United States. With further developments, especially on the treatment of the atmospheric CH4 sink, we expect the data assimilation system presented here will be able to contribute to the ongoing interpretation of changes in this important greenhouse gas budget.
    Materialart: Online-Ressource
    ISSN: 1991-9603
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2017
    ZDB Id: 2456725-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 8 ( 2022-04-22), p. 2433-2463
    Kurzfassung: Abstract. In this study, an extension on the previously reported status of the COllaborative Carbon Column Observing Network's (COCCON) calibration procedures incorporating refined methods is presented. COCCON is a global network of portable Bruker EM27/SUN FTIR spectrometers for deriving column-averaged atmospheric abundances of greenhouse gases. The original laboratory open-path lamp measurements for deriving the instrumental line shape (ILS) of the spectrometer from water vapour lines have been refined and extended to the secondary detector channel incorporated in the EM27/SUN spectrometer for detection of carbon monoxide (CO). The refinements encompass improved spectroscopic line lists for the relevant water lines and a revision of the laboratory pressure measurements used for the analysis of the spectra. The new results are found to be in good agreement with those reported by Frey et al. (2019) and discussed in detail. In addition, a new calibration cell for ILS measurements was designed, constructed and put into service. Spectrometers calibrated since January 2020 were tested using both methods for ILS characterization, open-path (OP) and cell measurements. We demonstrate that both methods can detect the small variations in ILS characteristics between different spectrometers, but the results of the cell method indicate a systematic bias of the OP method. Finally, a revision and extension of the COCCON network instrument-to-instrument calibration factors for XCO2, XCO and XCH4 is presented, incorporating 47 new spectrometers (of 83 in total by now). This calibration is based on the reference EM27/SUN spectrometer operated by the Karlsruhe Institute of Technology (KIT) and spectra collected by the collocated TCCON station Karlsruhe. Variations in the instrumental characteristics of the reference EM27/SUN from 2014 to 2017 were detected, probably arising from realignment and the dual-channel upgrade performed in early 2018. These variations are considered in the evaluation of the instrument-specific calibration factors in order to keep all tabulated calibration results consistent.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2022
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 9 ( 2022-05-12), p. 2955-2978
    Kurzfassung: Abstract. Vertical ozone profiles from combined spectral measurements in the ultraviolet and infrared spectral range were retrieved by using data from the TROPOspheric Monitoring Instrument on the Sentinel-5 Precursor (TROPOMI/S5P) and the Cross-track Infrared Sounder on the Suomi National Polar-orbiting Partnership (CrIS/Suomi-NPP), which are flying in loose formation 3 min apart in the same orbit. A previous study of ozone profiles retrieved exclusively from TROPOMI UV spectra showed that the vertical resolution in the troposphere is clearly limited (Mettig et al., 2021). The vertical resolution and the vertical extent of the ozone profiles is improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The combined retrieval particularly improves the accuracy of the retrieved tropospheric ozone and to a lesser degree stratospheric ozone up to 30 km. An increase in the degrees of freedom (DOF) by 1 DOF was found in the UV + IR retrieval compared to the UV-only retrieval. Compared to previous publications, which investigated combinations of UV and IR observations from the Ozone Monitoring Instrument and Tropospheric Emission Spectrometer (OMI and TES) and Global Ozone Monitoring Experiment version 2 and Infrared Atmospheric Sounding Interferometer (GOME-2 and IASI) pairs, the degree of freedom is lower, which is attributed to the reduced spectral resolution of CrIS compared to TES or IASI. Tropospheric lidar and ozonesondes were used to validate the ozone profiles and tropospheric ozone content (TOC). In their comparison with tropospheric lidars, both ozone profiles and TOCs show smaller biases for the retrieved data from the combined UV + IR observation than from the UV observations alone. For the ozone profiles below 10 km, the mean differences are around ±10 % and the mean TOC varies around ±3 DU. We show that TOCs from the combined retrieval agree better with ozonesonde results at northern latitudes than the UV-only and IR-only retrievals and also have lower scatter. In the tropics, the IR-only retrieval shows the best agrement with TOCs derived from ozonesondes. While in general the TOCs show good agreement with ozonesonde data, the profiles have a positive bias of around 30 % between 10 and 15 km. The reason is probably a positive stratospheric bias from the IR retrieval. The comparison of the UV + IR and UV ozone profiles up to 30 km with the Microwave Limb Sounder (MLS) demonstrates the improvement of the UV + IR profile in the stratosphere above 18 km. In comparison to the UV-only approach the retrieval shows improvements of up to 10 % depending on latitude but can also show worse results in some regions and latitudes.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2022
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 11 ( 2022-06-09), p. 3401-3437
    Kurzfassung: Abstract. We show new results from an updated version of the Fast atmOspheric traCe gAs retrievaL (FOCAL) retrieval method applied to measurements of the Greenhouse gases Observing SATellite (GOSAT) and its successor GOSAT-2. FOCAL was originally developed for estimating the total column carbon dioxide mixing ratio (XCO2) from spectral measurements made by the Orbiting Carbon Observatory-2 (OCO-2). However, depending on the available spectral windows, FOCAL also successfully retrieves total column amounts for other atmospheric species and their uncertainties within one single retrieval. The main focus of the current paper is on methane (XCH4; full-physics and proxy product), water vapour (XH2O) and the relative ratio of semi-heavy water (HDO) to water vapour (δD). Due to the extended spectral range of GOSAT-2, it is also possible to derive information on carbon monoxide (XCO) and nitrous oxide (XN2O) for which we also show first results. We also present an update on XCO2 from both instruments. For XCO2, the new FOCAL retrieval (v3.0) significantly increases the number of valid data compared with the previous FOCAL retrieval version (v1) by 50 % for GOSAT and about a factor of 2 for GOSAT-2 due to relaxed pre-screening and improved post-processing. All v3.0 FOCAL data products show reasonable spatial distribution and temporal variations. Comparisons with the Total Carbon Column Observing Network (TCCON) result in station-to-station biases which are generally in line with the reported TCCON uncertainties. With this updated version of the GOSAT-2 FOCAL data, we provide a first total column average XN2O product. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb, which can be explained by variations in tropopause height. The new GOSAT-2 XN2O product compares well with TCCON. Its station-to-station variability is lower than 2 ppb, which is about the magnitude of the typical N2O variations close to the surface. However, both GOSAT-2 and TCCON measurements show that the seasonal variations in the total column average XN2O are on the order of 8 ppb peak-to-peak, which can be easily resolved by the GOSAT-2 FOCAL data. Noting that only few XN2O measurements from satellites exist so far, the GOSAT-2 FOCAL product will be a valuable contribution in this context.
    Materialart: Online-Ressource
    ISSN: 1867-8548
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2022
    ZDB Id: 2505596-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 1 ( 2022-01-31), p. 325-360
    Kurzfassung: Abstract. The Thermal And Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT) has been returning data since April 2009. The version 9 (v9) Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm (Kiel et al., 2019) was used to derive estimates of carbon dioxide (CO2) dry air mole fraction (XCO2) from the TANSO-FTS measurements collected over its first 11 years of operation. The bias correction and quality filtering of the L2FP XCO2 product were evaluated using estimates derived from the Total Carbon Column Observing Network (TCCON) as well as values simulated from a suite of global atmospheric inversion systems (models) which do not assimilate satellite-derived CO2. In addition, the v9 ACOS GOSAT XCO2 results were compared with collocated XCO2 estimates derived from NASA's Orbiting Carbon Observatory-2 (OCO-2), using the version 10 (v10) ACOS L2FP algorithm. These tests indicate that the v9 ACOS GOSAT XCO2 product has improved throughput, scatter, and bias, when compared to the earlier v7.3 ACOS GOSAT product, which extended through mid 2016. Of the 37 million soundings collected by GOSAT through June 2020, approximately 20 % were selected for processing by the v9 L2FP algorithm after screening for clouds and other artifacts. After post-processing, 5.4 % of the soundings (2×106 out of 37×106) were assigned a “good” XCO2 quality flag, as compared to 3.9 % in v7.3 (〈1 ×106 out of 24×106). After quality filtering and bias correction, the differences in XCO2 between ACOS GOSAT v9 and both TCCON and models have a scatter (1σ) of approximately 1 ppm for ocean-glint observations and 1 to 1.5 ppm for land observations. Global mean biases against TCCON and models are less than approximately 0.2 ppm. Seasonal mean biases relative to the v10 OCO-2 XCO2 product are of the order of 0.1 ppm for observations over land. However, for ocean-glint observations, seasonal mean biases relative to OCO-2 range from 0.2 to 0.6 ppm, with substantial variation in time and latitude. The ACOS GOSAT v9 XCO2 data are available on the NASA Goddard Earth Science Data and Information Services Center (GES-DISC) in both the per-orbit full format (https://doi.org/10.5067/OSGTIL9OV0PN, OCO-2 Science Team et al., 2019b) and in the per-day lite format (https://doi.org/10.5067/VWSABTO7ZII4, OCO-2 Science Team et al., 2019a). In addition, a new set of monthly super-lite files, containing only the most essential variables for each satellite observation, has been generated to provide entry level users with a light-weight satellite product for initial exploration (CaltechDATA, https://doi.org/10.22002/D1.2178, Eldering, 2021). The v9 ACOS Data User's Guide (DUG) describes best-use practices for the GOSAT data (O'Dell et al., 2020). The GOSAT v9 data set should be especially useful for studies of carbon cycle phenomena that span a full decade or more and may serve as a useful complement to the shorter OCO-2 v10 data set, which begins in September 2014.
    Materialart: Online-Ressource
    ISSN: 1866-3516
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2022
    ZDB Id: 2475469-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Online-Ressource
    Online-Ressource
    Stockholm University Press ; 1999
    In:  Tellus A: Dynamic Meteorology and Oceanography Vol. 51, No. 5 ( 1999-01-01), p. 951-
    In: Tellus A: Dynamic Meteorology and Oceanography, Stockholm University Press, Vol. 51, No. 5 ( 1999-01-01), p. 951-
    Materialart: Online-Ressource
    ISSN: 1600-0870
    Sprache: Unbekannt
    Verlag: Stockholm University Press
    Publikationsdatum: 1999
    ZDB Id: 2026987-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2001
    In:  Geophysical Research Letters Vol. 28, No. 19 ( 2001-10), p. 3661-3664
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 28, No. 19 ( 2001-10), p. 3661-3664
    Kurzfassung: On 12 and 13 January 2001 backscatter sondes launched at Sodankylä, Finland (67°N, 27°E) detected an extraordinarily thick polar stratospheric cloud layer of more than 8 km vertical extent. On these days the polar vortex passed over northern Scandinavia. This provided synoptic‐scale low stratospheric temperatures leading to the formation of both liquid and solid phase particles. Two days later, on 15 January 2001, a regular radiosonde measured record low temperature of 176.7 K at an altitude of 25.2 km at the vortex edge. High vertical resolution radiosonde profiles and meteorological analyses indicate strong mountain wave activity on this day. This provides further evidence that the coldest temperatures in the Arctic lower stratosphere occur as a consequence of mountain wave cooling under cold synoptic‐scale background conditions.
    Materialart: Online-Ressource
    ISSN: 0094-8276 , 1944-8007
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2001
    ZDB Id: 2021599-X
    ZDB Id: 7403-2
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...