GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Bone Marrow Transplantation Vol. 56, No. 2 ( 2021-02), p. 314-326
    In: Bone Marrow Transplantation, Springer Science and Business Media LLC, Vol. 56, No. 2 ( 2021-02), p. 314-326
    Type of Medium: Online Resource
    ISSN: 0268-3369 , 1476-5365
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 632854-4
    detail.hit.zdb_id: 2004030-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Advances in Nutrition, Elsevier BV, Vol. 10, No. 2 ( 2019-03), p. 351-359
    Type of Medium: Online Resource
    ISSN: 2161-8313
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Nutrition in Clinical Practice, Wiley
    Abstract: Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data‐rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.
    Type of Medium: Online Resource
    ISSN: 0884-5336 , 1941-2452
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 645074-X
    detail.hit.zdb_id: 2170063-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Blood, American Society of Hematology, Vol. 142, No. Supplement 1 ( 2023-11-02), p. 4771-4771
    Abstract: Introduction Obesity, low adiponectin, high leptin, high insulin, and diets lacking plant-based foods are risk factors for plasma cell disorders (PCDs). Patients (pts) with monoclonal gammopathy (MGUS) and smoldering myeloma (SMM) and an elevated body mass index (BMI) are twice as likely to progress to myeloma (MM). There is evidence of microbiome dysbiosis in pts with PCDs and dietary changes can induce large microbial shifts. Therefore, there is a rationale to study a whole food plant-based dietary (WFPBD) intervention to improve modifiable biomarkers and disease trajectory. Methods This was a pilot, single-arm trial of WFPBD (self-selected prepared frozen lunch/dinner provided by Plantable with breakfast/snack guidance and no calorie restriction) for 12-weeks (w) and health coaching for 24w (by Plantable coach and a research dietitian) in pts with MGUS/SMM and BMI ≥25 (NCT04920084). The primary endpoint was feasibility (mean BMI reduction ≥5% and mean dietary adherence [kcal % unprocessed plant food intake] ≥70%) at 12w; secondary endpoints included quality of life (QoL) (EORTC QLQ C30 survey using a linear-mixed effect model), metabolic markers (plasma insulin, adiponectin leptin (AL) ratio via ELISA), gut microbiome (inverse Simpson index α-diversity and relative abundance of butyrate producers (RABP) via stool 16S sequencing), peripheral blood immune profile (leukocyte subsets via 36 color flow cytometry), secreted biomarkers (plasma via Olink inflammation panel) and change in monoclonal (M)-spike concentrations. Rate of change of M-spike/year (y) measured by slope with 95% CI was calculated for up to 20 months (m) pre-intervention and 20m post intervention start (baseline (BL)). A p-value for difference in M-spike rates was calculated. Results The study enrolled 23 pts of which 20 completed the 12w intervention and 16 completed 1y. The median age was 62y with 43% male, 43% non-White, 52% MGUS, 74% obese, and 26% prediabetic/diabetic. The study met feasibility endpoints with 90% mean and 92% median adherence during 12w intervention and 77% median at 24w. There was an 8.3% mean and 6.6% median BMI reduction at 12w and 8.6% median at 24w. There was an improvement in global health status/QoL (median increase 16.7 points, p=0.03), a reduction in dyspnea (median decrease -33.3 points, p=0.001), fatigue (median decrease -11.1 points, p=0.06), and insulin (median decrease 0.791 mU/L; p=0.01), and an increase in AL ratio (median increase 0.09; p=0.0002), α-diversity (median increase 6.18 to 8.42; p= 0.03) and RABP (median increase 0.03 to 0.08; p=0.042) at 12w. Prelim results at 12w suggest a measurable, albeit not significant change in immune subsets such as an increase in monocytes, regulatory T cells, and a decrease in dendritic cells, trends previously associated with anti-inflammatory diets, as well as increase in butyrate. A decrease in proinflammatory cytokines IL8 (p=0.065), IL12B (p=0.068), and TNFB (p=0.082) and an increase in FGF21 (p=0.043) (promoter of insulin sensitivity) was also observed. Butyrate is known to reduces pro-inflammatory cytokines and increase anti-inflammatory proteins, including FGF21. Further immune and microbiome analysis is ongoing. Of 16 pts followed for 1y, 2 with significant BMI reduction had significant improvement in M-spike trajectory: Case 1: Mayo Int Risk IgGκ/IgGλ MGUS achieved a 1y BMI reduction of 19%. Pre-intervention M-spike changed +0.28g/dL/y (6 M-spike values), and during intervention M-spike changed +0.03g/dL/y (11 M-spike values); p=0.008. BL M-spike 1.2g/dL and bone marrow plasma cells (BM PC) & lt;5%; 1.5y BM PC 5-9%. Case 2: IMWG Int Risk IgGκ SMM achieved a 1y BMI reduction of 13%. Pre-intervention M-spike changed +0.11g/dL/y (8 M-spike values), and during intervention M-spike changed -0.05g/dL/y (8 M-spike values); p=0.04. BL M-spike 1.2g/dL and BM PC 20-30%; 1y BM PC 10-15%. Two pts without significant BMI reduction (-4% and -1% at 1y) had rising M-spikes. The remaining 12 pts had median 7.5% BMI reduction at 1y with stable M-spike. Conclusions This is the first dietary intervention trial in PCDs with insights into the mechanisms by which a WFPBD may delay progression. The intervention improves QoL, metabolic (BMI, insulin resistance), microbiome (α-diversity and butyrate producers) as well as immune (reduced inflammation) profile with potentially slowing progression trajectory in a subset. A larger trial is underway (NCT05640843).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 23 ( 2022-12-01), p. 5149-5155
    Abstract: Sustained minimal residual disease (MRD) negativity is associated with long-term survival in multiple myeloma. The gut microbiome is affected by diet, and in turn can modulate host immunity, for example through production of short-chain fatty acids including butyrate. We hypothesized that dietary factors affect the microbiome (abundance of butyrate-producing bacteria or stool butyrate concentration) and may be associated with multiple myeloma outcomes. Experimental Design: We examined the relationship of dietary factors (via a food frequency questionnaire), stool metabolites (via gas chromatography–mass spectrometry), and the stool microbiome (via 16S sequencing - α-diversity and relative abundance of butyrate-producing bacteria) with sustained MRD negativity (via flow cytometry at two timepoints 1 year apart) in myeloma patients on lenalidomide maintenance. The Healthy Eating Index 2015 score and flavonoid nutrient values were calculated from the food frequency questionnaire. The Wilcoxon rank sum test was used to evaluate associations with two-sided P & lt; 0.05 considered significant. Results: At 3 months, higher stool butyrate concentration (P = 0.037), butyrate producers (P = 0.025), and α-diversity (P = 0.0035) were associated with sustained MRD negativity. Healthier dietary proteins, (from seafood and plants), correlated with butyrate at 3 months (P = 0.009) and sustained MRD negativity (P = 0.05). Consumption of dietary flavonoids, plant nutrients with antioxidant effects, correlated with stool butyrate concentration (anthocyanidins P = 0.01, flavones P = 0.01, and flavanols P = 0.02). Conclusions: This is the first study to demonstrate an association between a plant-based dietary pattern, stool butyrate production, and sustained MRD negativity in multiple myeloma, providing rationale to evaluate a prospective dietary intervention.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...