GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2000
    In:  Genetics Vol. 155, No. 3 ( 2000-07-01), p. 1095-1104
    In: Genetics, Oxford University Press (OUP), Vol. 155, No. 3 ( 2000-07-01), p. 1095-1104
    Abstract: Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6OR, has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6PA, shares only 68% amino acid identity with HET-6OR. The second incompatibility gene, un-24OR, encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxylterminal portion of UN-24 is associated with incompatibility and is variable between un-24OR and the alternative allele un-24PA. Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2000
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2012
    In:  Eukaryotic Cell Vol. 11, No. 4 ( 2012-04), p. 482-493
    In: Eukaryotic Cell, American Society for Microbiology, Vol. 11, No. 4 ( 2012-04), p. 482-493
    Abstract: Hemicellulose, the second most abundant plant biomass fraction after cellulose, is widely viewed as a potential substrate for the production of liquid fuels and other value-added materials. Degradation of hemicellulose by filamentous fungi requires production of many different enzymes, which are induced by biopolymers or its derivatives and regulated mainly at the transcriptional level through transcription factors (TFs). Neurospora crassa , a model filamentous fungus, expresses and secretes enzymes required for plant cell wall deconstruction. To better understand genes specifically associated with degradation of hemicellulose, we applied secretome and transcriptome analysis to N. crassa grown on beechwood xylan. We identified 34 secreted proteins and 353 genes with elevated transcription on xylan. The xylanolytic phenotype of strains with deletions in genes identified from the secretome and transcriptome analysis of the wild type was assessed, revealing functions for known and unknown proteins associated with hemicellulose degradation. By evaluating phenotypes of strains containing deletions of predicted TF genes in N. crassa , we identified a TF (XLR-1; x y l an degradation r egulator 1 ) essential for hemicellulose degradation that is an ortholog to XlnR/XYR1 in Aspergillus and Trichoderma species, respectively, a major transcriptional regulator of genes encoding both cellulases and hemicellulases. Deletion of xlr-1 in N. crassa abolished growth on xylan and xylose, but growth on cellulose and cellulolytic activity were only slightly affected. To determine the regulatory mechanisms for hemicellulose degradation, we explored the transcriptional regulon of XLR-1 under xylose, xylanolytic, and cellulolytic conditions. XLR-1 regulated only some predicted hemicellulase genes in N. crassa and was required for a full induction of several cellulase genes. Hemicellulase gene expression was induced by a combination of release from carbon catabolite repression (CCR) and induction. This systematic analysis illustrates the similarities and differences in regulation of hemicellulose degradation among filamentous fungi.
    Type of Medium: Online Resource
    ISSN: 1535-9778 , 1535-9786
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 2071564-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  GENETICS Vol. 224, No. 4 ( 2023-08-09)
    In: GENETICS, Oxford University Press (OUP), Vol. 224, No. 4 ( 2023-08-09)
    Abstract: A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a “winner-takes-all” phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2013
    In:  Genetics Vol. 195, No. 3 ( 2013-11-01), p. 883-898
    In: Genetics, Oxford University Press (OUP), Vol. 195, No. 3 ( 2013-11-01), p. 883-898
    Abstract: Vegetative fusion is essential for the development of an interconnected colony in many filamentous fungi. In the ascomycete fungus Neurospora crassa, vegetative fusion occurs between germinated conidia (germlings) via specialized structures termed “conidial anastomosis tubes” (CATs) and between hyphae within a mature colony. In N. crassa, both CAT and hyphal fusion are under the regulation of a conserved MAP kinase cascade (NRC1, MEK2, and MAK2). Here we show that the predicted downstream target of the MAK2 kinase pathway, a Ste12-like transcription factor known as PP1, regulates elements required for CAT and hyphal fusion. The PP1 regulatory network was revealed by expression profiling of wild type and the Δpp-1 mutant during conidial germination and colony establishment. To identify targets required for cell fusion more specifically, expression-profiling differences were assessed via inhibition of MAK2 kinase activity during chemotropic interactions and cell fusion. These approaches led to the identification of new targets of the cell fusion pathway that, when mutated, showed alterations in chemotropic signaling and cell fusion. In particular, conidial germlings carrying a deletion of NCU04732 (Δham-11) failed to show chemotropic interactions and cell fusion. However, signaling (as shown by oscillation of MAK2 and SO to CAT tips), chemotropism, and cell fusion were restored in Δham-11 germlings when matched with wild-type partner germlings. These data reveal novel insights into the complex process of self-signaling, germling fusion, and colony establishment in filamentous fungi.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2013
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  Genetics Vol. 185, No. 4 ( 2010-08-01), p. 1271-1282
    In: Genetics, Oxford University Press (OUP), Vol. 185, No. 4 ( 2010-08-01), p. 1271-1282
    Abstract: Meiosis is a highly regulated process in eukaryotic species. The filamentous fungus Neurospora crassa has been shown to be missing homologs of a number of meiotic initiation genes conserved in Saccharomyces cerevisiae, but has three homologs of the well-characterized middle meiotic transcriptional regulator NDT80. In this study, we evaluated the role of all three NDT80 homologs in the formation of female reproductive structures, sexual development, and meiosis. We found that none of the NDT80 homologs were required for meiosis and that even the triple mutant was unaffected. However, strains containing mutations in NCU09915 (fsd-1) were defective in female sexual development and ascospore maturation. vib-1 was a major regulator of protoperithecial development in N. crassa, and double mutants carrying deletions of both vib-1 (NCU03725) and fsd-1 exhibited a synergistic effect on the timing of female reproductive structure (protoperithecia) formation. We further evaluated the role of the N. crassa homolog of IME2, a kinase involved in initiation of meiosis in S. cerevisiae. Strains containing mutations in ime-2 showed unregulated development of protoperithecia. Genetic analysis indicated that mutations in vib-1 were epistatic to ime-2, suggesting that IME-2 may negatively regulate VIB-1 activity. Our data indicate that the IME2/NDT80 pathway is not involved in meiosis in N. crassa, but rather regulates the formation of female reproductive structures.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Genetics Vol. 211, No. 4 ( 2019-04-01), p. 1255-1267
    In: Genetics, Oxford University Press (OUP), Vol. 211, No. 4 ( 2019-04-01), p. 1255-1267
    Abstract: Cells cooperate, compete, and are attacked in nature, driving the evolution of mechanisms for recognizing self versus non-self. Filamentous fungal cells cooperate to form an interconnected colony while competing with genetically dissimilar colonies... Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus Neurospora crassa is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. N. crassa cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a Pprm1-luciferase reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δham-11 mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δham-11 + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at doc-1 and doc-2, which regulate prefusion non-self recognition; cells with dissimilar doc-1 and doc-2 alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in N. crassa.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: GENETICS, Oxford University Press (OUP), ( 2023-09-19)
    Abstract: Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB in the filamentous fugus Aspergillus nidulans. The ubaBQ247*, ΔubaB and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear-pore-complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Genetics, Oxford University Press (OUP), Vol. 172, No. 3 ( 2006-03-01), p. 1545-1555
    Abstract: Nonself recognition in filamentous fungi is conferred by genetic differences at het (heterokaryon incompatibility) loci. When individuals that differ in het specificity undergo hyphal fusion, the heterokaryon undergoes a programmed cell death reaction or is highly unstable. In Neurospora crassa, three allelic specificities at the het-c locus are conferred by a highly polymorphic domain. This domain shows trans-species polymorphisms indicative of balancing selection, consistent with the role of het loci in nonself recognition. We determined that a locus closely linked to het-c, called pin-c (partner for incompatibility with het-c) was required for het-c nonself recognition and heterokaryon incompatibility (HI). The pin-c alleles in isolates that differ in het-c specificity were extremely polymorphic. Heterokaryon and transformation tests showed that nonself recognition was mediated by synergistic nonallelic interactions between het-c and pin-c, while allelic interactions at het-c increased the severity of the HI phenotype. The pin-c locus encodes a protein containing a HET domain; predicted proteins containing HET domains are frequent in filamentous ascomycete genomes. These data suggest that nonallelic interactions may be important in nonself recognition in filamentous fungi and that proteins containing a HET domain may be a key factor in these interactions.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2006
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1988
    In:  Science Vol. 241, No. 4865 ( 1988-07-29), p. 570-573
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 241, No. 4865 ( 1988-07-29), p. 570-573
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1988
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2010
    In:  Science Vol. 330, No. 6000 ( 2010-10), p. 84-86
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 330, No. 6000 ( 2010-10), p. 84-86
    Abstract: Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2010
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...