GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Lancet, Elsevier BV, Vol. 394, No. 10212 ( 2019-11), p. 1907-1914
    Type of Medium: Online Resource
    ISSN: 0140-6736
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2067452-1
    detail.hit.zdb_id: 3306-6
    detail.hit.zdb_id: 1476593-7
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: British Journal of Anaesthesia, Elsevier BV, Vol. 120, No. 1 ( 2018-01), p. 146-155
    Type of Medium: Online Resource
    ISSN: 0007-0912
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2011968-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Journal of Geodesy Vol. 94, No. 7 ( 2020-07)
    In: Journal of Geodesy, Springer Science and Business Media LLC, Vol. 94, No. 7 ( 2020-07)
    Abstract: XGM2019e is a combined global gravity field model represented by spheroidal harmonics up to degree and order (d/o) 5399, corresponding to a spatial resolution of 2′ (~ 4 km). As data sources, it includes the satellite model GOCO06s in the longer wavelength range up to d/o 300 combined with a ground gravity grid which also covers the shorter wavelengths. The ground data consist over land and ocean of gravity anomalies provided by courtesy of NGA (15′ resolution, identical to XGM2016) augmented with topographically derived gravity information over land (EARTH2014). Over the oceans, gravity anomalies derived from satellite altimetry are used (DTU13 with a resolution of 1′). The combination of the satellite data with the ground gravity observations is performed by using full normal equations up to d/o 719 (15′). Beyond d/o 719, a block-diagonal least squares solution is calculated for the high-resolution ground gravity data (from topography and altimetry). All calculations are performed in the spheroidal harmonic domain. In the spectral band up to d/o 719, the new model shows a slightly improved behaviour in the magnitude of a few mm RMS over land as compared to preceding models such as XGM2016, EIGEN6c4 or EGM2008 when validated with independent geoid information derived from GNSS/levelling. Over land and in the spectral range above d/o 719, the accuracy of XGM2019e marginally suffers from the sole use of topographic forward modelling, and geoid differences at GNSS/levelling stations are increased in the order of several mm RMS in well-surveyed areas, such as the US and Europe, compared to models containing real gravity data over their entire spectrum, e.g. EIGEN6c4 or EGM2008. However, GNSS/levelling validation also indicates that the performance of XGM2019e can be considered as globally more consistent and independent of existing high-resolution global models. Over the oceans, the model exhibits an enhanced performance (equal or better than preceding models), which is confirmed by comparison of the MDT’s computed from CNES/CLS 2015 mean sea surface and the high-resolution geoid models. The MDT based on XGM2019e shows fewer artefacts, particularly in the coastal regions, and fits globally better to DTU17MDT which is considered as an independent reference MDT.
    Type of Medium: Online Resource
    ISSN: 0949-7714 , 1432-1394
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1478938-3
    detail.hit.zdb_id: 2679875-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Journal of Geodesy Vol. 92, No. 4 ( 2018-4), p. 443-451
    In: Journal of Geodesy, Springer Science and Business Media LLC, Vol. 92, No. 4 ( 2018-4), p. 443-451
    Type of Medium: Online Resource
    ISSN: 0949-7714 , 1432-1394
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1478938-3
    detail.hit.zdb_id: 2679875-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Journal of Geodesy Vol. 95, No. 8 ( 2021-08)
    In: Journal of Geodesy, Springer Science and Business Media LLC, Vol. 95, No. 8 ( 2021-08)
    Abstract: We present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, therefore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are sufficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals can be obtained by this technique. Together with some further minor alterations these modifications are implemented in the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).
    Type of Medium: Online Resource
    ISSN: 0949-7714 , 1432-1394
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1478938-3
    detail.hit.zdb_id: 2679875-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: British Journal of Surgery, Oxford University Press (OUP), Vol. 106, No. 2 ( 2019-01-08), p. e73-e80
    Abstract: The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally.
    Type of Medium: Online Resource
    ISSN: 0007-1323 , 1365-2168
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2006309-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2019
    In:  Journal of Geodetic Science Vol. 9, No. 1 ( 2019-01-01), p. 29-40
    In: Journal of Geodetic Science, Walter de Gruyter GmbH, Vol. 9, No. 1 ( 2019-01-01), p. 29-40
    Abstract: The AntGrav project, funded by the German Research Foundation (DFG) has the main objective to homogenize and optimize Antarctic gravity field information. Within this project an evaluation procedure is needed to inspect all different kind of gravity field surveys available in Antarctica. In this paper a suitable methodology is proposed. We present an approach for fast 3D gravity point data reduction in different spectral bands. This is achieved through pre-calculating a fine 3D mesh of synthesized gravity functionals over the entirety of the Antarctic continent, for which two different global models are used: the combined satellite model GOCO05s for the long-wavelength part, and the topographic model Earth2014 for the shorter wavelengths. To maximize the applicability separate meshes are calculated for different spectral bands in order to specifically reduce a certain band or a selected combination. All meshes are calculated for gravity anomalies as well as gravity disturbances. Utilizing these meshes, synthesized gravity data at arbitrary positions is computed by conventional 3D interpolation methods (e.g. linear, cubic or spline). It is shown that the applied approach can reach a worst-case interpolation error of less than 1 mGal. Evaluation results are presented for the AntGG grid and exemplary for the in-situ measurements of the AGAP and BAS-LAND campaigns. While general properties, large-scale errors and systematic effects can usually be detected, small-scale errors (e.g. of single points) are mostly untraceable due to the uncertainties within the topographic model.
    Type of Medium: Online Resource
    ISSN: 2081-9943
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2591739-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1933
    In:  Deutsche Zeitschrift für die Gesamte Gerichtliche Medizin Vol. 21, No. S6 ( 1933-11), p. 278-286
    In: Deutsche Zeitschrift für die Gesamte Gerichtliche Medizin, Springer Science and Business Media LLC, Vol. 21, No. S6 ( 1933-11), p. 278-286
    Type of Medium: Online Resource
    ISSN: 0937-9827 , 1437-1596
    Language: German
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1933
    detail.hit.zdb_id: 1459222-8
    SSG: 2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...