GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 872-872
    Abstract: The Cadherin-6 (CDH6) gene was found to be frequently overexpressed in ovarian and renal cancers, while featuring a lineage-restricted normal tissue expression pattern. We hypothesized that based on the combined observation of frequent overexpression of CDH6 in cancer and a restricted normal tissue expression, CDH6 might be an ideal tumor antigen for targeting using an antibody-drug conjugate (ADC) approach. CHD6-ADC is a fully-human anti-CDH6 IgG1, linked via sulfo-SPDB to the tubulin-binding maytansinoid payload DM4. CDH6-ADC was evaluated across multiple linker-payload combinations with the sulfo-SPDB-DM4 format being selected based on a superior combined profile pertaining to activity, selectivity and tolerability. To gain a broader understanding of CDH6-ADC activity in vivo we profiled the lead candidate against a panel of 31 unselected patient derived ovarian xenograft (PDX) models in a 1×1×1 PDX clinical trial, similar to that described in Gao et al., 2015. In this unbiased high throughput in vivo screen, CDH6-ADC demonstrated robust antitumor activity, with an overall response rate of 39%. Responses were generally durable beyond 150 days and were achieved at doses yielding exposures anticipated to be achievable in humans and observed in PDX models featuring a range of CDH6 expression level and degree of tumor heterogeneity. Retrospective analysis of individual PDX responses and molecular profiling data demonstrate that sensitivity to CDH6-ADC is highly correlated to CDH6 transcript and protein levels. These findings suggest an ability to prospectively identify patients most likely to benefit from this novel targeted therapy. Furthermore, CDH6-ADC demonstrated robust tumor regressions in a representative PDX xenograft model that was refractory to carboplatin/paclitaxel standard of care therapy. These data suggest that CDH6-ADC may benefit both treatment naïve patients and patients that have progressed on prior therapy containing tubulin-targeting anti-mitotics. Extending beyond ovarian cancer, we found CDH6 to be frequently overexpressed in renal cancer. CDH6-ADC was active against RCC PDX models featuring patient relevant levels of CDH6 expression. Data described herein suggest that this novel ADC may be an effective treatment for patients with CDH6 expressing tumors, including ovarian and renal cancer - both indications with a high unmet medical need. Citation Format: Carl U. Bialucha, Scott D. Collins, Yeonju Shim, Xiamei Zhang, Roberto Velazquez, Colleen Kowal, Caroline Bullock, Hongbo Cai, Stacy M. Rivera, Julie M. Goldovitz, Esther Kurth, Alice T. Loo, Guizhi Yang, John Green, Lance Ostrom, Matthew J. Meyer, Rebecca Mosher, Hui Gao, Juliet Williams, Emma Lees. In vivo activity of a novel CDH6 targeting antibody-drug conjugate, including population-scale ovarian PDX clinical trial. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 872.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 2974-2974
    Abstract: In an attempt to mine tumor versus normal mRNA expression datasets for novel tumor antigens, we identified the Cadherin-6 (CDH6) gene as frequently overexpressed in ovarian and renal cancers, while featuring a lineage-restricted normal tissue expression pattern. CDH6, also known as K-(kidney)-cadherin, is a member of the cadherin superfamily of calcium-dependent cell-cell adhesion molecules. We hypothesized that based on the combined observation of frequent overexpression of CDH6 in cancer and a restricted normal tissue expression, CDH6 might be an ideal tumor antigen for targeting using an antibody-drug conjugate (ADC) approach. CDH6-ADC is a fully-human anti-CDH6 IgG1, linked via sulfo-SPDB to the maytansinoid payload DM4. The antibody component of CDH6-ADC was selected from a panel of anti-CDH6 antibodies based on a multi-factorial lead selection campaign incorporating readouts of internalization propensity, in vitro cytotoxicity, as well as in vivo PK and efficacy across multiple linker-payload formats. CDH6-ADC features potent, target-dependent in vivo activity consistent with the mechanism of the anti-mitotic, tubulin-targeting sulfo-SPDB-DM4 linker-payload combination used. Specifically, treatment of CDH6-expressing ovarian cancer xenograft models with CDH6-ADC results in the time-dependent generation of intra-tumoral ADC catabolites and concomitant induction of phospho-histone H3 and cleaved caspase-3 - markers of G2/M arrest and apoptosis, respectively. CDH6-ADC induces durable tumor regressions at clinically relevant exposures in multiple human patient-derived tumor xenografts (PDX) across both ovarian and renal cancer lineages. To gain a more thorough understanding of CDH6-ADC activity in pre-clinical models of human ovarian cancer and identify potential molecular correlates for patient stratification, we profiled CDH6-ADC in a PDX clinical trial or PCT comprising 31 individual PDX models. In this unselected population, treatment with CDH6-ADC resulted in robust anti-tumor activity. Integration of PDX response data with CDH6 target expression in both the PDX models and human clinical samples indicate CDH6 expression patterns consistent with in vivo activity are found in a substantial fraction of ovarian, renal and cholangiocarcinoma patients. Together, the encouraging pre-clinical efficacy and tolerability data support the clinical evaluation of CDH6-ADC. Citation Format: Scott D. Collins, Parmita Saxena, Xiao Y. Li, Yeonju Shim, Lance Ostrom, Nicholas C. Yoder, Kalli C. Catcott, Molly A. McShea, Xiuxia Sun, Sanela Bilic, William R. Tschantz, Meghan Flaherty, Keith Mansfield, Tiancen Hu, Vladimir Capka, Markus Kurz, Ivana Liric Rajlic, Anne Serdakowski London, Duc Nguyen, Rebecca Mosher, Matthew J. Meyer, Aaron Bourret, Jamal Saeh, Scott Cameron, Emma Lees, Carl U. Bialucha. Targeting cadherin-6 (CDH6) with an antibody-drug conjugate for the treatment of ovarian and renal cancer. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2974.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2009
    In:  Molecular Cancer Therapeutics Vol. 8, No. 12_Supplement ( 2009-12-10), p. A41-A41
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 8, No. 12_Supplement ( 2009-12-10), p. A41-A41
    Abstract: Introduction: Pharmacodynamic (PD) measurements in patient tissues following administration of cancer drugs may be used to determine a drug's activity and calculate dosing schedules. Biomarker selection for these tests must evaluate the most pertinent proteins in the pathway, but must also take into account biomarker stability in the tissue being tested. Constitutive expression of the PI3K pathway occurs with a high frequency in a variety of human malignancies. We sought to determine whether improper handling of tumor tissue can lead to inaccurate analysis of PI3K-AKT pathway activation when using immunohistochemistry (IHC). Methods: 23 human cancer xenograft tumors were grown in nude mice (n=3/line) and allowed to stay at room temperature for fixed lengths of time to simulate handling of human specimens following surgery. Uniform sized tissue fragments (600–1000 mg) were kept in PBS for 0, 15, 30 and 120 minutes following resection prior to fixation in formalin and paraffin embedding. Four of these tumor lines were also frozen and analyzed by Western blot. IHC was preformed utilizing two pAKT antibodies and one pP70S6K (pS6) antibody. Following IHC, staining intensity was quantified using the Aperio image analysis system. Results: Significant decrease in signal (p & lt;.05) was seen as soon as fifteen minutes of ischemia with both pS6 and pAKT antibodies by IHC in some samples. In nearly all of the samples that had detectable levels of pAKT or pS6 at time zero, this was gone by 120 minutes. There was also considerable discordance between pS6 and pAKT staining in the control samples bringing into question pS6 as a relevant pAKT surrogate biomarker. Conclusion: Significant care should be taken in the interpretation of phospho-specific antibodies since results are strongly dependent on the time of ischemia. Broader analysis of pre-analytic biomarkers not dependent on tissue ischemia may be utilized as surrogate for pathway activation. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):A41.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2000
    In:  Developmental Biology Vol. 219, No. 2 ( 2000-03), p. 250-258
    In: Developmental Biology, Elsevier BV, Vol. 219, No. 2 ( 2000-03), p. 250-258
    Type of Medium: Online Resource
    ISSN: 0012-1606
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2000
    detail.hit.zdb_id: 1463203-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 35 ( 2010-08-31), p. 15473-15478
    Abstract: Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 2, No. 51 ( 2010-09-29)
    Abstract: The malignant brain cancer medulloblastoma is characterized by mutations in Hedgehog (Hh) signaling pathway genes, which lead to constitutive activation of the G protein (heterotrimeric guanosine triphosphate–binding protein)–coupled receptor Smoothened (Smo). The Smo antagonist NVP-LDE225 inhibits Hh signaling and induces tumor regression in animal models of medulloblastoma. However, evidence of resistance was observed during the course of treatment. Molecular analysis of resistant tumors revealed several resistance mechanisms. We noted chromosomal amplification of Gli2, a downstream effector of Hh signaling, and, more rarely, point mutations in Smo that led to reactivated Hh signaling and restored tumor growth. Analysis of pathway gene expression signatures also, unexpectedly, identified up-regulation of phosphatidylinositol 3-kinase (PI3K) signaling in resistant tumors as another potential mechanism of resistance. Probing the relevance of increased PI3K signaling, we demonstrated that addition of the PI3K inhibitor NVP-BKM120 or the dual PI3K-mTOR (mammalian target of rapamycin) inhibitor NVP-BEZ235 to the initial treatment with the Smo antagonist markedly delayed the development of resistance. Our findings may be useful in informing treatment strategies for medulloblastoma.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: mAbs, Informa UK Limited, Vol. 6, No. 6 ( 2014-11-02), p. 1560-1570
    Type of Medium: Online Resource
    ISSN: 1942-0862 , 1942-0870
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2014
    detail.hit.zdb_id: 2537838-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Company of Biologists ; 2001
    In:  Development Vol. 128, No. 23 ( 2001-12-01), p. 4747-4756
    In: Development, The Company of Biologists, Vol. 128, No. 23 ( 2001-12-01), p. 4747-4756
    Abstract: The outgrowth of the ureteric bud from the posterior nephric duct epithelium and the subsequent invasion of the bud into the metanephric mesenchyme initiate the process of metanephric, or adult kidney, development. The receptor tyrosine kinase RET and glial cell-derived neurotrophic factor (GDNF) form a signaling complex that is essential for ureteric bud growth and branching morphogenesis of the ureteric bud epithelium. We demonstrate that Pax2 expression in the metanephric mesenchyme is independent of induction by the ureteric bud. Pax2 mutants are deficient in ureteric bud outgrowth and do not express GDNF in the uninduced metanephric mesenchyme. Furthermore, Pax2 mutant mesenchyme is unresponsive to induction by wild-type heterologous inducers. In normal embryos, GDNF is sufficient to induce ectopic ureter buds in the posterior nephric duct, a process inhibited by bone morphogenetic protein 4. However, GDNF replacement in organ culture is not sufficient to stimulate ureteric bud outgrowth from Pax2 mutant nephric ducts, indicating additional defects in the nephric duct epithelium of Pax2 mutants. Pax2 can activate expression of GDNF in cell lines derived from embryonic metanephroi. Furthermore, Pax2 protein can bind to upstream regulatory elements within the GDNF promoter region and can transactivate expression of reporter genes. Thus, activation of GDNF by Pax2 coordinates the position and outgrowth of the ureteric bud such that kidney development can begin.
    Type of Medium: Online Resource
    ISSN: 1477-9129 , 0950-1991
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2001
    detail.hit.zdb_id: 2007916-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2020
    In:  JAAPA Vol. 33, No. 10 ( 2020-10), p. 53-55
    In: JAAPA, Ovid Technologies (Wolters Kluwer Health), Vol. 33, No. 10 ( 2020-10), p. 53-55
    Type of Medium: Online Resource
    ISSN: 1547-1896
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    SAGE Publications ; 2002
    In:  California Management Review Vol. 44, No. 4 ( 2002-07), p. 100-128
    In: California Management Review, SAGE Publications, Vol. 44, No. 4 ( 2002-07), p. 100-128
    Type of Medium: Online Resource
    ISSN: 0008-1256 , 2162-8564
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2002
    detail.hit.zdb_id: 222930-4
    detail.hit.zdb_id: 2066069-8
    SSG: 3,2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...