GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: General Chemistry, Yaoyi International Publishing, Vol. 7, No. 1 ( 2021), p. 200015-200015
    Type of Medium: Online Resource
    ISSN: 2414-3421
    Language: English
    Publisher: Yaoyi International Publishing
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-6-24)
    Abstract: Studying seismicity in a volcanic environment provides important information on the state of activity of volcanoes. The seismicity of the Neapolitan volcanoes, Campi Flegrei, Vesuvius, and Ischia, shows distinctive characteristics for each volcano, covering a wide range of patterns and types. In this study we relocated some significant volcano-tectonic earthquake swarms that occurred in Campi Flegrei and Vesuvius. Moreover, we compared the earthquake occurrence evolution, the magnitude and the seismic energy release of the three volcanoes. Also, we considered the results of seismic analysis in the light of geochemical and ground deformation data that contribute to defining the state of activity of volcanoes. In Campi Flegrei, which is experiencing a long term unrest, we identified a seismogenic structure at shallow depth in Pisciarelli zone that has been activated repeatedly. The increasing seismicity accompanies an escalation of the hydrothermal activity and a ground uplift phase. At Vesuvius a very shallow seismicity is recorded, which in recent years has shown an increase in terms of the number of events per year. Earthquakes are usually located right beneath the crater axis. They are concentrated in a volume affected by the hydrothermal system. Finally, Ischia generally shows a low level of seismicity, however, in Casamicciola area events with a moderate magnitude can occur and these are potentially capable of causing severe damage to the town and population, due to their small hypocentral depth (typically & lt; 2.5 km). After the seismic crisis of August 21, 2017 (mainshock magnitude M = 4), the seismicity returned to a low level in terms of occurrence rate and magnitude of earthquakes. The seismicity of these three different volcanic areas shows some common aspects that highlight a relevant role of hydrothermal processes in the seismogenesis of volcanic areas. However, while the main swarms in Campi Flegrei and most of the Vesuvian earthquakes are distributed along conduit-like structures, the seismicity of Ischia is mainly located along faults. Furthermore, the temporal evolution of seismicity in Neapolitan volcanic area suggests a concomitant increase in the occurrence of earthquakes both in Campi Flegrei and Vesuvius in recent years.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 8 ( 2020-12-8)
    Abstract: We present 4 years of continuous seafloor deformation measurements carried out in the Campi Flegrei caldera (Southern Italy), one of the most hazardous and populated volcanic areas in the world. The seafloor sector of the caldera has been monitored since early 2016 by the MEDUSA marine research infrastructure, consisting of four instrumented buoys installed where sea depth is less than 100 m. Each MEDUSA buoy is equipped with a cabled, seafloor module with geophysical and oceanographic sensors and a subaerial GPS station providing seafloor deformation and other environmental measures. Since April 2016, the GPS vertical displacements at the four buoys show a continuous uplift of the seafloor with cumulative measured uplift ranging between 8 and 20 cm. Despite the data being affected by environmental noise associated with sea and meteorological conditions, the horizontal GPS displacements on the buoys show a trend coherent with a radial deformation pattern. We use jointly the GPS horizontal and vertical velocities of seafloor and on-land deformations for modeling the volcanic source, finding that a spherical source fits best the GPS data. The geodetic data produced by MEDUSA has now been integrated with the data flow of other monitoring networks deployed on land at Campi Flegrei.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 14, No. 5 ( 2022-03-06), p. 1287-
    Abstract: Two paroxysmal explosions occurred at Stromboli on 3 July and 28 August 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self-Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Instituto Nazionale di Geofisica e Vulcanologia, INGV ; 2022
    In:  Annals of Geophysics Vol. 65, No. 1 ( 2022-05-02), p. DM107-
    In: Annals of Geophysics, Instituto Nazionale di Geofisica e Vulcanologia, INGV, Vol. 65, No. 1 ( 2022-05-02), p. DM107-
    Abstract: Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions. Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes. Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models’ outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL.
    Type of Medium: Online Resource
    ISSN: 2037-416X , 1593-5213
    Language: English
    Publisher: Instituto Nazionale di Geofisica e Vulcanologia, INGV
    Publication Date: 2022
    detail.hit.zdb_id: 2410939-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Remote Sensing, MDPI AG, Vol. 11, No. 15 ( 2019-08-02), p. 1813-
    Abstract: After a period of mild eruptive activity, Stromboli showed between 2017 and 2018 a reawakening phase, with an increase in the eruptive activity starting in May 2017. The alert level of the volcano was raised from “green” (base) to “yellow” (attention) on 7 December 2017, and a small lava overflowed the crater rim on 15 December 2017. Between July 2017 and August 2018 the monitoring networks recorded nine major explosions, which are a serious hazard for Stromboli because they affect the summit area, crowded by tourists. We studied the 2017–2018 eruptive phase through the analysis of multidisciplinary data comprising thermal video-camera images, seismic, geodetic and geochemical data. We focused on the major explosion mechanism analyzing the well-recorded 1 December 2017 major explosion as a case study. We found that the 2017–2018 eruptive phase is consistent with a greater gas-rich magma supply in the shallow system. Furthermore, through the analysis of the case study major explosion, we identified precursory phases in the strainmeter and seismic data occurring 77 and 38 s before the explosive jet reached the eruptive vent, respectively. On the basis of these short-term precursors, we propose an automatic timely alarm system for major explosions at Stromboli volcano.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-04-30)
    Abstract: Muography consists in observing the differential absorption of muons – elementary particles produced through cosmic-ray interactions in the Earth atmosphere – going through the volcano and can attain a spatial resolution of tens of meters. We present here the first experiment of nuclear emulsion muography at the Stromboli volcano. Muons have been recorded during a period of five months by a detector of 0.96 m 2 area. The emulsion films were prepared at the Gran Sasso underground laboratory and were analyzed at Napoli, Salerno and Tokyo scanning laboratories. Our results highlight a significant low-density zone at the summit of the volcano with density contrast of 30–40% with respect to bedrock. The structural setting of this part of the volcanic edifice controls the eruptive dynamics and the stability of the “Sciara del Fuoco” slope, which is affected by recurrent tsunamigenic landslides. Periodical imaging of the summit of the Stromboli volcano such as that provided by muography can become a useful method for studying the evolution of the internal structure of the volcanic edifice.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Remote Sensing, MDPI AG, Vol. 11, No. 2 ( 2019-01-17), p. 167-
    Abstract: Quiescent volcanoes dissipate a large part of their thermal energy through hot soils and ground degassing mainly in restricted areas called Diffuse Degassing Structures. La Solfatara crater represents the main spot of thermal release for the Campi Flegrei volcano (Italy) despite its reduced dimensions with regards to the whole caldera. The purpose of this study was to develop a method to measure thermal energy release extrapolating it from the ground surface temperature. We used imaging from thermal cameras at short distances (1 m) to obtain a mapping of areas with thermal anomalies and a measure of their temperatures. We built a conceptual model of the energy release from the ground to atmosphere, which well fits the experimental data taken in the La Solfatara crater. Using our model and data, we could estimate the average heat flux in a portion of the crater as q a v g = 220 ± 40 W / m 2 , compatible with other measurements in literature.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geodesy, Springer Science and Business Media LLC, Vol. 97, No. 6 ( 2023-06)
    Abstract: Seafloor deformation monitoring is now routinely performed in the marine sector of the Campi Flegrei volcanic area (Southern Italy). The MEDUSA infrastructure is formed by four buoys deployed at a water depth ranging from 40 to 96 m, and equipped with cGPS receivers, accelerometers and magnetic compasses to monitor the buoy status and a seafloor module with a bottom pressure recorder and other onboard instruments. The analysis of the time series data acquired by the MEDUSA monitoring infrastructure system allows to study the seafloor deformation in the Campi Flegrei caldera with geodetic accuracy. In a previous work, we show that the time series acquired by the Campi Flegrei cGPS onland network and MEDUSA over the period 2017–2020 are in good agreement with the ground deformation field predicted by a Mogi model which is widely used to describe the observed deformation of an active volcano in terms of magma intrusion. Only for one of the buoys, CFBA (A), the data differ significantly from the model prediction, at a level of $$\simeq $$ ≃  6.9  $$\sigma $$ σ and of $$\simeq $$ ≃  23.7  $$\sigma $$ σ for the seafloor horizontal speed and direction, respectively. For this reason, we devised a new method to reconstruct the horizontal sea bottom displacement considering in the analysis both cGPS and compass data. The method, applied to the CFBA buoy measurements and validated also on the CFBC (C) buoy, uses compass data to correct cGPS positions accounting for the pole inclination. Including also systematic errors, the internal consistency, always within $$\sim $$ ∼  3  $$\sigma $$ σ for the speed and $$\sim $$ ∼  2  $$\sigma $$ σ for the angle, between the results derived for different maximum inclinations of the buoy pole (up to 3.5 $$^{\circ }$$ ∘ ) indicates that the method allows to significantly reduce the impact of the pole inclination which, if not properly taken into account, can alter the estimation of the horizontal seafloor deformation. In particular, we find a good convergence of the retrieved velocity and deformation angle as we include in the analysis data from increasing values of the buoy pole inclination. Taking the result derived assuming the maximum allowed cutoff and accounting for statistical and systematic errors, we found a speed $$v$$ v = (3.521 ± 0.039 ( stat ) ± 0.352 ( syst )) cm/yr and a deformation direction angle $$\alpha $$ α = ( $$-115.159$$ - 115.159 ± 0.670 ( stat ) ± 7.630 ( syst )) $$^{\circ }$$ ∘ (statistical errors at 1  $$\sigma $$ σ quoted from the rms of their values, main systematic errors added linearly). The relative impact of the main potential systematic (statistical) effects increases (decreases) with the cutoff. Our analysis provides a horizontal speed consistent with the model at a level of $$\simeq $$ ≃  5.2  $$\sigma $$ σ ( stat only) or of $$\simeq $$ ≃  0.5  $$\sigma $$ σ ( stat and syst added linearly), and a deformation angle consistent with the model at $$\simeq $$ ≃  4.3  $$\sigma $$ σ level ( stat only) or at $$\simeq $$ ≃  0.3  $$\sigma $$ σ level ( stat and syst added linearly). Correspondingly, the module of the vectorial difference between the velocity retrieved from the data and the velocity of the adopted Mogi model diminishes by a factor of $$\simeq $$ ≃ 7.65 ± 1.23 ( stat ) or ± 5.78 ( stat + syst ) with respect to the previous work. A list of potential improvements to be implemented in the system and instruments is also discussed.
    Type of Medium: Online Resource
    ISSN: 0949-7714 , 1432-1394
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1478938-3
    detail.hit.zdb_id: 2679875-X
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Bulletin of Volcanology, Springer Science and Business Media LLC, Vol. 76, No. 10 ( 2014-10)
    Type of Medium: Online Resource
    ISSN: 0258-8900 , 1432-0819
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 635594-8
    detail.hit.zdb_id: 1458483-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...