GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-12-21)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-12-21)
    Abstract: Kelp forests are the largest vegetated marine ecosystem on earth, but vast areas of their distribution remain unmapped and unmonitored. Efficient and cost-effective methods for measuring the standing biomass of these ecosystems are urgently needed for coastal mapping, ocean accounting and sustainable management of wild harvest. Here we show how widely available acoustic equipment on vessels can be used to perform robust and large-scale (kilometer) quantifications of kelp biomass which can be used in assessments and monitoring programs. We demonstrate how to interpret echograms from acoustic systems into point estimates of standing biomass in order to create spatial maps of biomass distribution. We also explore what environmental conditions are suitable for acoustic measures. This has direct application for blue carbon accounting, coastal monitoring, management of wild seaweed harvest and the protection and conservation of marine habitats supporting high biodiversity.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Basin Research, Wiley, Vol. 31, No. 5 ( 2019-10), p. 827-840
    Abstract: Several important aspects of the Messinian salinity crisis (MSC) are still subject to controversy and debate after more than 40 years of studies. Recent work from the eastern Mediterranean have provided a renewed stratigraphic framework for the basin that is inconsistent with previous interpretation studies in the area. This study presents a description of the evolution of the depositional environment in the northern Levant Basin in a time interval surrounding the end of the famous event, from Late Messinian to the Pliocene. Through seismic mapping, we have identified a sediment package overlying the intra‐Messinian truncation surface (IMTS). This package is interpreted as an axial fluvial system running along the Levant Margin in stage 3 of the salinity crisis, likely composed of redeposited evaporites and clastic material. The system was fed primarily from a large fan system building out from the basin margin during a time of sea‐level low stand following a major erosional event, and presumably also from similar systems along the Latakia Ridge and Syria. Our interpretation also lends weight to the theory of a subaerial origin for the truncation surface after a catastrophic desiccation event succeeding the deposition of the halite‐dominated Messinian evaporite succession, based on differences in maximum erosional depth throughout the basin. After the deposition of the post‐IMTS package, deep marine settings were restored in the basin, and hemipelagic sediments from the Nile Delta and the Levant Margin have dominated the sediment deposition since.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 80, No. 7 ( 2023-09-26), p. 1829-1853
    Abstract: Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...