GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 40, No. 12 ( 2013-06-28), p. 3069-3073
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 21 ( 2010-11-01), p. 5678-5698
    Abstract: The Atlantic meridional overturning circulation (AMOC) makes the strongest oceanic contribution to the meridional redistribution of heat. Here, an observation-based, 48-month-long time series of the vertical structure and strength of the AMOC at 26.5°N is presented. From April 2004 to April 2008, the AMOC had a mean strength of 18.7 ± 2.1 Sv (1 Sv ≡ 106 m3 s−1) with fluctuations of 4.8 Sv rms. The best guess of the peak-to-peak amplitude of the AMOC seasonal cycle is 6.7 Sv, with a maximum strength in autumn and a minimum in spring. While seasonality in the AMOC was commonly thought to be dominated by the northward Ekman transport, this study reveals that fluctuations of the geostrophic midocean and Gulf Stream transports of 2.2 and 1.7 Sv rms, respectively, are substantially larger than those of the Ekman component (1.2 Sv rms). A simple model based on linear dynamics suggests that the seasonal cycle is dominated by wind stress curl forcing at the eastern boundary of the Atlantic. Seasonal geostrophic AMOC anomalies might represent an important and previously underestimated component of meridional transport and storage of heat in the subtropical North Atlantic. There is evidence that the seasonal cycle observed here is representative of much longer intervals. Previously, hydrographic snapshot estimates between 1957 and 2004 had suggested a long-term decline of the AMOC by 8 Sv. This study suggests that aliasing of seasonal AMOC anomalies might have accounted for a large part of the inferred slowdown.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2011
    In:  Journal of Climate Vol. 24, No. 10 ( 2011-05-15), p. 2429-2449
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 10 ( 2011-05-15), p. 2429-2449
    Abstract: Continuous estimates of the oceanic meridional heat transport in the Atlantic are derived from the Rapid Climate Change–Meridional Overturning Circulation (MOC) and Heatflux Array (RAPID–MOCHA) observing system deployed along 26.5°N, for the period from April 2004 to October 2007. The basinwide meridional heat transport (MHT) is derived by combining temperature transports (relative to a common reference) from 1) the Gulf Stream in the Straits of Florida; 2) the western boundary region offshore of Abaco, Bahamas; 3) the Ekman layer [derived from Quick Scatterometer (QuikSCAT) wind stresses]; and 4) the interior ocean monitored by “endpoint” dynamic height moorings. The interior eddy heat transport arising from spatial covariance of the velocity and temperature fields is estimated independently from repeat hydrographic and expendable bathythermograph (XBT) sections and can also be approximated by the array. The results for the 3.5 yr of data thus far available show a mean MHT of 1.33 ± 0.40 PW for 10-day-averaged estimates, on which time scale a basinwide mass balance can be reasonably assumed. The associated MOC strength and variability is 18.5 ± 4.9 Sv (1 Sv ≡ 106 m3 s−1). The continuous heat transport estimates range from a minimum of 0.2 to a maximum of 2.5 PW, with approximately half of the variance caused by Ekman transport changes and half caused by changes in the geostrophic circulation. The data suggest a seasonal cycle of the MHT with a maximum in summer (July–September) and minimum in late winter (March–April), with an annual range of 0.6 PW. A breakdown of the MHT into “overturning” and “gyre” components shows that the overturning component carries 88% of the total heat transport. The overall uncertainty of the annual mean MHT for the 3.5-yr record is 0.14 PW or about 10% of the mean value.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 17 ( 2014-09-01), p. 6439-6455
    Abstract: The Atlantic meridional overturning circulation (AMOC) has received considerable attention, motivated by its major role in the global climate system. Observations of AMOC strength at 26°N made by the Rapid Climate Change (RAPID) array provide the best current estimate of the state of the AMOC. The period 2004–11 when RAPID AMOC is available is too short to assess decadal variability of the AMOC. This modeling study introduces a new AMOC index (called AMOCSV) at 26°N that combines the Florida Straits transport, the Ekman transport, and the southward geostrophic Sverdrup transport. The main hypothesis in this study is that the upper midocean geostrophic transport calculated using the RAPID array is also wind-driven and can be approximated by the geostrophic Sverdrup transport at interannual and longer time scales. This index is expected to reflect variations in the AMOC at interannual to decadal time scales. This estimate of the surface branch of the AMOC can be constructed as long as reliable measurements are available for the Gulf Stream and for wind stress. To test the reliability of the AMOCSV on interannual and longer time scales, two different numerical simulations are used: a forced and a coupled simulation. Using these simulations the AMOCSV captures a substantial fraction of the AMOC variability and is in good agreement with the AMOC transport at 26°N on both interannual and decadal time scales. These results indicate that it might be possible to extend the observation-based AMOC at 26°N back to the 1980s.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2006
    In:  Geochemistry, Geophysics, Geosystems Vol. 7, No. 10 ( 2006-10)
    In: Geochemistry, Geophysics, Geosystems, American Geophysical Union (AGU), Vol. 7, No. 10 ( 2006-10)
    Abstract: An eddy‐permitting numerical ocean model is used to test to what extent the Atlantic meridional overturning circulation (MOC) can be reconstructed from sea water densities at the ocean margins. By gradually reducing the number of locations where the densities are known and by adding systematic and random errors comparable to those expected in paleoreconstructions of sea water densities, we test if a reliable picture of the MOC can still be obtained. Our results show that even with only 0.07% of the boundary densities the mean state of the MOC as well as its variability can be reconstructed. The addition of a systematic error results in an overestimation or underestimation of the meridional transport. With a random error similar to the one expected for paleoestimates of the density the mean state of the MOC can still be reproduced, especially north of 40°N. However, the random noise largely masks the relatively modest MOC variability observed in the model run. For both systematic and random noise in the density field there is a larger sensitivity for MOC reconstructions the closer a location is from the equator. For a measuring campaign that aims to infer past states of the Atlantic MOC on the basis of boundary densities, the present study suggests that the best strategy is to collect data that allow estimation of the basin‐wide vertical density structure between 40°N and 50°N. Information from only a few latitudes is sufficient for a reasonable representation of the mean MOC state.
    Type of Medium: Online Resource
    ISSN: 1525-2027 , 1525-2027
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2006
    detail.hit.zdb_id: 2027201-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    IOP Publishing ; 2019
    In:  Environmental Research Letters Vol. 14, No. 11 ( 2019-11-01), p. 114035-
    In: Environmental Research Letters, IOP Publishing, Vol. 14, No. 11 ( 2019-11-01), p. 114035-
    Abstract: During the summer of 2015, central Europe experienced a major heatwave that was preceded by anomalously cold sea surface temperatures (SSTs) in the northern North Atlantic. Recent observation-based studies found a correlation between North Atlantic SST in spring and European summer temperatures, suggesting potential for predictability. Here we show, by using a high-resolution climate model, that ocean temperature anomalies, in combination with matching atmospheric and sea-ice initial conditions were key to the development of the 2015 European heatwave. In a series of 30-member ensemble simulations we test different combinations of ocean temperature and salinity initial states versus non-initialised climatology, mediated in both ensembles by different atmospheric/sea-ice initial conditions, using a non-standard initialisation method without data-assimilation. With the best combination of the initial ocean, and matching atmosphere/sea-ice initial conditions, the ensemble mean temperature response over central Europe in this set-up equals 60% of the observed anomaly, with 6 out of 30 ensemble-members showing similar, or even larger surface air temperature anomalies than observed.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Climate Dynamics Vol. 46, No. 7-8 ( 2016-4), p. 2593-2610
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 46, No. 7-8 ( 2016-4), p. 2593-2610
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2010
    In:  Climate Dynamics Vol. 34, No. 5 ( 2010-4), p. 615-627
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 34, No. 5 ( 2010-4), p. 615-627
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 18 ( 2019-09-15), p. 6137-6161
    Abstract: An ocean mixed layer heat budget methodology is used to investigate the physical processes determining subpolar North Atlantic (SPNA) sea surface temperature (SST) and ocean heat content (OHC) variability on decadal to multidecadal time scales using the state-of-the-art climate model HadGEM3-GC2. New elements include development of an equation for evolution of anomalous SST for interannual and longer time scales in a form analogous to that for OHC, parameterization of the diffusive heat flux at the base of the mixed layer, and analysis of a composite Atlantic meridional overturning circulation (AMOC) event. Contributions to OHC and SST variability from two sources are evaluated: 1) net ocean–atmosphere heat flux and 2) all other processes, including advection, diffusion, and entrainment for SST. Anomalies in OHC tendency propagate anticlockwise around the SPNA on multidecadal time scales with a clear relationship to the phase of the AMOC. AMOC anomalies lead SST tendencies, which in turn lead OHC tendencies in both the eastern and western SPNA. OHC and SST variations in the SPNA on decadal time scales are dominated by AMOC variability because it controls variability of advection, which is shown to be the dominant term in the OHC budget. Lags between OHC and SST are traced to differences between the advection term for OHC and the advection–entrainment term for SST. The new results have implications for interpretation of variations in Atlantic heat uptake in the CMIP6 climate model assessment.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2013
    In:  Ocean Science Vol. 9, No. 6 ( 2013-12-05), p. 1057-1069
    In: Ocean Science, Copernicus GmbH, Vol. 9, No. 6 ( 2013-12-05), p. 1057-1069
    Abstract: Abstract. Local climate is significantly affected by changes in the oceanic heat content on a range of timescales. This variability is driven by heat fluxes from both the atmosphere and the ocean. In the Atlantic the meridional overturning circulation is the main contributor to the oceanic meridional heat transport for latitudes south of about 50° N. The RAPID project has been successfully monitoring the Atlantic meridional overturning at 26° N since 2004. This study demonstrates how these data can be used to estimate the variability of the basin-wide ocean heat content in the upper 800 m between 26° and 36° N. Traditionally the atmosphere is seen to dominate the ocean heat content variability. However, previous studies have looked at smaller areas in the Gulf Stream region, finding that the ocean dominates deseasoned fluctuations of ocean heat content, while studies of the whole North Atlantic region suggest that the atmosphere may be dominant. In our study we use a box model to investigate fluctuations of the ocean heat content in the subtropical North Atlantic between 26° and 36° N. The box model approach is validated using 19 yr of high-resolution general circulation model (GCM) data. We find that in both the GCM- and RAPID-based data the ocean heat transport dominates the deseasoned heat content variability, while the atmosphere's impact on the ocean heat content evolution stabilizes after 6 months. We demonstrate that the utility of the RAPID data goes beyond monitoring the overturning circulation at 26° N, and that it can be used to better understand the causes of ocean heat content variability in the North Atlantic. We illustrate this for a recent decrease in ocean heat content which was observed in the North Atlantic in 2009 and 2010. Our results suggest that most of this ocean heat content reduction can be explained by a reduction of the meridional ocean heat transport during this period.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...