GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Environmental Microbiology, Wiley, Vol. 24, No. 9 ( 2022-09), p. 4124-4136
    Kurzfassung: Seasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34‐fold increase of Synechococcus by fall. Furthermore, a significant decline in biopolymers concentrations covaried with increasing microbial diversity based on 16S rRNA gene sequencing along with a community shift towards fewer polymer‐degrading genera in fall. The seasonal succession in the biopolymer pool and microbes indicates distinct metabolic regimes, with a higher relative abundance of polysaccharide‐degrading genera in summer and a higher relative abundance of common taxa in fall. The parallel analysis of DOM and microbial diversity provides an important baseline for microbe–substrate relationships over the seasonal cycle in the Arctic Ocean.
    Materialart: Online-Ressource
    ISSN: 1462-2912 , 1462-2920
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2022
    ZDB Id: 2020213-1
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Genes, MDPI AG, Vol. 14, No. 3 ( 2023-03-01), p. 623-
    Kurzfassung: Arctic microbial communities (i.e., protists and bacteria) are increasingly subjected to an intrusion of new species via Atlantification and an uncertain degree of ocean warming. As species differ in adaptive traits, these oceanic conditions may lead to compositional changes with functional implications for the ecosystem. In June 2021, we incubated water from the western Fram Strait at three temperatures (2 °C, 6 °C, and 9 °C), mimicking the current and potential future properties of the Arctic Ocean. Our results show that increasing the temperature to 6 °C only minorly affects the community, while an increase to 9 °C significantly lowers the diversity and shifts the composition. A higher relative abundance of large hetero- and mixotrophic protists was observed at 2 °C and 6 °C compared to a higher abundance of intermediate-sized temperate diatoms at 9 °C. The compositional differences at 9 °C led to a higher chlorophyll a:POC ratio, but the C:N ratio remained similar. Our results contradict the common assumption that smaller organisms and heterotrophs are favored under warming and strongly indicate a thermal limit between 6 °C and 9 °C for many Arctic species. Consequently, the magnitude of temperature increase is a crucial factor for microbial community reorganization and the ensuing ecological consequences in the future Arctic Ocean.
    Materialart: Online-Ressource
    ISSN: 2073-4425
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2527218-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 378, No. 2181 ( 2020-10-02), p. 20190366-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 378, No. 2181 ( 2020-10-02), p. 20190366-
    Kurzfassung: The Arctic Ocean is considerably affected by the consequences of global warming, including more extreme seasonal fluctuations in the physical environment. So far, little is known about seasonality in Arctic marine ecosystems in particular microbial dynamics and cycling of organic matter. The limited characterization can be partially attributed to logistic difficulties of sampling in the Arctic Ocean beyond the summer season. Here, we investigated the distribution and composition of dissolved organic matter (DOM), gel particles and heterotrophic bacterial activity in the Fram Strait during summer and autumn. Our results revealed that phytoplankton biomass influenced the concentration and composition of semi-labile dissolved organic carbon (DOC), which strongly decreased from summer to autumn. The seasonal decrease in bioavailability of DOM appeared to be the dominant control on bacterial abundance and activity, while no temperature effect was determined. Additionally, there were clear differences in transparent exopolymer particles (TEP) and Coomassie Blue stainable particles (CSP) dynamics. The amount of TEP and CSP decreased from summer to autumn, but CSP was relatively enriched in both seasons. Our study therewith indicates clear seasonal differences in the microbial cycling of organic matter in the Fram Strait. Our data may help to establish baseline knowledge about seasonal changes in microbial ecosystem dynamics to better assess the impact of environmental change in the warming Arctic Ocean. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning’.
    Materialart: Online-Ressource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Sprache: Englisch
    Verlag: The Royal Society
    Publikationsdatum: 2020
    ZDB Id: 208381-4
    ZDB Id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...