GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2018
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 285, No. 1883 ( 2018-07-25), p. 20181178-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 285, No. 1883 ( 2018-07-25), p. 20181178-
    Abstract: The costs of predation may exert significant pressure on the mode of communication used by an animal, and many species balance the benefits of communication (e.g. mate attraction) against the potential risk of predation. Four groups of toothed whales have independently evolved narrowband high-frequency (NBHF) echolocation signals. These signals help NBHF species avoid predation through acoustic crypsis by echolocating and communicating at frequencies inaudible to predators such as mammal-eating killer whales. Heaviside's dolphins ( Cephalorhynchus heavisidii ) are thought to exclusively produce NBHF echolocation clicks with a centroid frequency around 125 kHz and little to no energy below 100 kHz. To test this, we recorded wild Heaviside's dolphins in a sheltered bay in Namibia. We demonstrate that Heaviside's dolphins produce a second type of click with lower frequency and broader bandwidth in a frequency range that is audible to killer whales. These clicks are used in burst-pulses and occasional click series but not foraging buzzes. We evaluate three different hypotheses and conclude that the most likely benefit of these clicks is to decrease transmission directivity and increase conspecific communication range. The expected increase in active space depends on background noise but ranges from 2.5 (Wenz Sea State 6) to 5 times (Wenz Sea State 1) the active space of NBHF signals. This dual click strategy therefore allows these social dolphins to maintain acoustic crypsis during navigation and foraging, and to selectively relax their crypsis to facilitate communication with conspecifics.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2018
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Biology, The Company of Biologists, ( 2015-01-01)
    Abstract: Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here we measured single click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beamwidth. We recorded echolocation clicks using a linear array of receivers and estimated the beamwidth of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beamwidth, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2015
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Experimental Biology, The Company of Biologists
    Abstract: Anthropogenic underwater noise has increased over the past century, raising concern about the impact on cetaceans that rely on sound for communication, navigation, and locating prey and predators. Many terrestrial animals increase the amplitude of their acoustic signals to partially compensate for the masking effect of noise (the Lombard response), but it has been suggested that cetaceans almost fully compensate with amplitude adjustments for increasing noise levels. Here, we use sound-recording DTAGs on pairs of free-ranging common bottlenose dolphins (Tursiops truncatus) to test (i) if dolphins increase signal amplitude to compensate for increasing ambient noise and (ii) whether or not adjustments are identical for different signal types. We present evidence of a Lombard response in the range of 0.1-0.3 dB per 1 dB increase in ambient noise, which is similar to that of terrestrial animals, but much lower than the response reported for other cetaceans. We found that signature whistles tended to be louder and with a lower degree of amplitude adjustment to noise compared to non-signature whistles, suggesting that signature whistles may be selected for higher output levels and may have a smaller scope for amplitude adjustment to noise. The consequence of the limited degree of vocal amplitude compensation is a loss of active space during periods of increased noise, with potential consequences for group cohesion, conspecific encounter rates, and mate attraction.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2019
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Informa UK Limited ; 2008
    In:  Bioacoustics Vol. 17, No. 1-3 ( 2008-01), p. 166-168
    In: Bioacoustics, Informa UK Limited, Vol. 17, No. 1-3 ( 2008-01), p. 166-168
    Type of Medium: Online Resource
    ISSN: 0952-4622 , 2165-0586
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2008
    detail.hit.zdb_id: 2566432-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-8-4)
    Abstract: Common bottlenose dolphins ( Tursiops truncatus ) produce individually distinctive signature whistles that are learned early in life and that help animals recognize and maintain contact with conspecifics. Signature whistles are the predominant whistle type produced when animals are isolated from conspecifics. Health assessments of dolphins in Sarasota, Florida (USA) provide a unique opportunity to record signature whistles, as dolphins are briefly separated from conspecifics. Recordings were first made in the mid 1970’s, and then nearly annually since 1984. The Sarasota Dolphin Whistle Database (SDWD) now contains 926 recording sessions of 293 individual dolphins, most of known age, sex, and matrilineal relatedness. The longest time span over which an individual has been recorded is 43 years, and 85 individuals have been recorded over a decade or more. Here we describe insights about signature whistle structure revealed by this unique and expansive dataset. Signature whistles of different dolphins show great variety in their fundamental frequency contours. Signature whistle types (with ‘whistle type’ defined as all whistles visually categorized as sharing a particular frequency modulation pattern) can consist of a single stereotyped element, or loop (single-loop whistles), or of multiple stereotyped loops with or without gaps (multi-loop whistles). Multi-loop signature whistle types can also show extensive variation in both number and contour of loops. In addition, fundamental frequency contours of all signature whistle types can be truncated (deletions) or embellished (additions), and other features are also occasionally incorporated. However, even with these variable features, signature whistle types tend to be highly stereotyped and easily distinguishable due to the extensive variability in contours among individuals. In an effort to quantify this individual distinctiveness, and to compare it to other species, we calculated Beecher’s Information Statistic and found it to be higher than for any other animal signal studied so far. Thus, signature whistles have an unusually high capacity to convey information on individual identity. We briefly review the large range of research projects that the SDWD has enabled thus far, and look ahead to its potential to answer a broad suite of questions about dolphin communication.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Animal Ecology, Wiley, Vol. 91, No. 8 ( 2022-08), p. 1567-1581
    Abstract: Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood‐based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Reports Vol. 12, No. 1 ( 2022-09-13)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-09-13)
    Abstract: Large-scale offshore wind farms are a critical component of the worldwide climate strategy. However, their developments have been opposed by the fishing industry because of concerns regarding the impacts of pile driving vibrations during constructions on commercially important marine invertebrates, including bivalves. Using field-based daily exposure, we showed that pile driving induced repeated valve closures in different scallop life stages, with particularly stronger effects for juveniles. Scallops showed no acclimatization to repetitive pile driving across and within days, yet quickly returned to their initial behavioral baselines after vibration-cessation. While vibration sensitivity was consistent, daily pile driving did not disrupt scallop circadian rhythm, but suggests serious impacts at night when valve openings are greater. Overall, our results show distance and temporal patterns can support future mitigation strategies but also highlight concerns regarding the larger impact ranges of impending widespread offshore wind farm constructions on scallop populations.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 27 ( 2023-07-04)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 27 ( 2023-07-04)
    Abstract: Human caregivers interacting with children typically modify their speech in ways that promote attention, bonding, and language acquisition. Although this “motherese,” or child-directed communication (CDC), occurs in a variety of human cultures, evidence among nonhuman species is very rare. We looked for its occurrence in a nonhuman mammalian species with long-term mother–offspring bonds that is capable of vocal production learning, the bottlenose dolphin ( Tursiops truncatus ). Dolphin signature whistles provide a unique opportunity to test for CDC in nonhuman animals, because we are able to quantify changes in the same vocalizations produced in the presence or absence of calves. We analyzed recordings made during brief catch-and-release events of wild bottlenose dolphins in waters near Sarasota Bay, Florida, United States, and found that females produced signature whistles with significantly higher maximum frequencies and wider frequency ranges when they were recorded with their own dependent calves vs. not with them. These differences align with the higher fundamental frequencies and wider pitch ranges seen in human CDC. Our results provide evidence in a nonhuman mammal for changes in the same vocalizations when produced in the presence vs. absence of offspring, and thus strongly support convergent evolution of motherese, or CDC, in bottlenose dolphins. CDC may function to enhance attention, bonding, and vocal learning in dolphin calves, as it does in human children. Our data add to the growing body of evidence that dolphins provide a powerful animal model for studying the evolution of vocal learning and language.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2018
    In:  The Journal of the Acoustical Society of America Vol. 143, No. 4 ( 2018-04-01), p. 2564-2569
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 143, No. 4 ( 2018-04-01), p. 2564-2569
    Abstract: The Australian snubfin dolphin (Orcaella heinsohni) is endemic to Australian waters, yet little is known about its abundance and habitat use. To investigate the feasibility of Passive Acoustic Monitoring for snubfin dolphins, biosonar clicks were recorded in Cygnet Bay, Australia, using a four-element hydrophone array. Clicks had a mean source level of 200 ± 5 dB re 1 μPa pp, transmission directivity index of 24 dB, mean centroid frequency of 98 ± 9 kHz, and a root-mean-square bandwidth of 31 ± 3 kHz. Such properties lend themselves to passive acoustic monitoring, but are comparable to similarly-sized delphinids, thus requiring additional cues to discriminate between snubfins and sympatric species.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2018
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Methods in Ecology and Evolution, Wiley, Vol. 14, No. 8 ( 2023-08), p. 1852-1863
    Abstract: Investigations of collective movement and animal communication have often followed distinct, though complementary, trajectories. Both subfields are deeply concerned with how information flows between individuals and shapes subsequent behaviour. Collective movement has largely focused on the dynamics of passive, cue‐mediated group coordination, while animal communication has primarily examined the content and function of active dyadic signal exchanges in sender–receiver frameworks. However, in many social groups, network‐wide signalling and collective movement decisions are tightly linked. Here we discuss opportunities afforded by using multi‐sensor tracking tags to simultaneously monitor the fine‐scale movements and vocalisations of entire social groups. We highlight how such data can elucidate the role of vocal signals in individual and collective movement while illuminating the structures of entire vocal‐interaction sequences at previously unexamined timescales and across entire communication networks. We identify practical and analytical challenges associated with these new tools and datasets, and present avenues for addressing them. We specifically address issues associated with the deployment and synchronisation of multiple tags, the processing and interpretation of resulting multidimensional datasets, and the benefits of combining tag‐based data collection with experimental approaches. Finally, we argue that a comparative approach employing consistent methodologies across a range of environments, populations and systems is needed to shed light on the evolutionary ecology of communication and collective behaviour.
    Type of Medium: Online Resource
    ISSN: 2041-210X , 2041-210X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2528492-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...