GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Critical Care, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2017-12)
    Type of Medium: Online Resource
    ISSN: 1364-8535
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2051256-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Freshwater Biology, Wiley, Vol. 60, No. 10 ( 2015-10), p. 2169-2186
    Abstract: Tundra ponds are a dominant feature on the Arctic Coastal Plain, but their response to warming, especially in the long‐term, is largely unknown. Our study assessed changes in algal nutrient limitation over a 40‐year period in historically studied ponds that may have been affected by either human development in the region or increased temperatures leading to permafrost thaw and nutrient release. We also compared nutrient limitation of algae in the pelagic and benthic zones at a landscape level. Nutrient diffusing substrata ( NDS ) and bottled nutrient incubations, which expose natural algal communities to known quantities of nitrogen (N) and phosphorus (P), were utilised to determine benthic and phytoplankton algal nutrient limitation, respectively, in a series of ponds on the north slope of Alaska, USA . This included ponds where phytoplankton nutrient limitation was examined in 1971–1973 as part of the International Biological Program ( IBP ), as well as ponds in a remote protected area and others near the village of Barrow. Nutrient limitation status of phytoplankton has changed since the original IBP study 40 years ago from P limitation to NP co‐limitation. One‐third of regional phytoplankton enrichment experiments indicated no nutrient limitation of algal growth, and none exhibited single‐nutrient P limitation. This shift in nutrient limitation was coincident with increased water column nutrients due to degrading permafrost, and to the expansion into the ponds of macrophytes, which may compete with algae for available nitrogen. A comparison of pelagic and benthic experiments across the landscape revealed differences among these zones with a predominance of NP limitation of phytoplankton and absence of nutrient limitation in the benthic zone, reflecting contrasting nutrient limitation status within the same ponds. Permafrost thaw is probably reintroducing previously frozen stores of P or N to the sediment surface, which are quickly taken up by periphyton but become limited in the water column. Grazing by invertebrates, which were not excluded from the benthic assays, may also have influenced the results. While ponds within the village of Barrow had higher nutrient and algae levels, there was no obvious effect of urban development on nutrient limitation status, nor did development appear to have influenced the historic IBP pond sites.
    Type of Medium: Online Resource
    ISSN: 0046-5070 , 1365-2427
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 2020306-8
    detail.hit.zdb_id: 121180-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Earth Surface Dynamics, Copernicus GmbH, Vol. 11, No. 2 ( 2023-03-24), p. 227-245
    Abstract: Abstract. Thawing permafrost can alter topography, ecosystems, and sediment and carbon fluxes, but predicting landscape evolution of permafrost-influenced watersheds in response to warming and/or hydrological changes remains an unsolved challenge. Sediment flux and slope instability in sloping saturated soils have been commonly predicted from topographic metrics (e.g., slope, drainage area). In addition to topographic factors, cohesion imparted by soil and vegetation and melting ground ice may also control spatial trends in slope stability, but the distribution of ground ice is poorly constrained and hard to predict. To address whether slope stability and surface displacements follow topographic-based predictions, we document recent drivers of permafrost sediment flux present on a landscape in western Alaska that include creep, solifluction, gullying, and catastrophic hillslope failures ranging in size from a few meters to tens of meters, and we find evidence of rapid and substantial landscape change on an annual timescale. We quantify the timing and rate of surface movements using a multi-pronged, multi-scalar dataset including aerial surveys, interannual GPS surveys, synthetic aperture radar interferometry (InSAR), and climate data. Despite clear visual evidence of downslope soil transport of solifluction lobes, we find that the interannual downslope surface displacement of these features does not outpace downslope displacement of soil in locations where lobes are absent (downslope movement means: 7 cm yr−1 for lobes over 2 years vs. 10 cm yr−1 in landscape positions without lobes over 1 year). Annual displacements do not appear related to slope, drainage area, or modeled total solar radiation but are likely related to soil thickness, and volumetric sediment fluxes are high compared to temperate landscapes of comparable bedrock lithology. Time series of InSAR displacements show accelerated movement in late summer, associated with intense rainfall and/or deep thaw. While mapped slope failures do cluster at slope–area thresholds, a simple slope stability model driven with hydraulic conductivities representative of throughflow in mineral and organic soil drastically overpredicts the occurrence of slope failures. This mismatch implies permafrost hillslopes have unaccounted-for cohesion and/or throughflow pathways, perhaps modulated by vegetation, which stabilize slopes against high rainfall. Our results highlight the breadth and complexity of soil transport processes in Arctic landscapes and demonstrate the utility of using a range of synergistic data collection methods to observe multiple scales of landscape change, which can aid in predicting periglacial landscape evolution.
    Type of Medium: Online Resource
    ISSN: 2196-632X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2736054-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Drones Vol. 7, No. 4 ( 2023-04-11), p. 258-
    In: Drones, MDPI AG, Vol. 7, No. 4 ( 2023-04-11), p. 258-
    Abstract: Over the past decade, advancements in collection platforms such as unoccupied aerial systems (UAS), survey-grade GNSS, sensor packages, processing software, and spatial analytical tools have facilitated change detection analyses at an unprecedented resolution over broader spatial and temporal extents and in environments where such investigations present challenges. These technological improvements, coupled with the accessibility and versatility of UAS technology, have pushed the boundaries of spatial and temporal scales in geomorphic change detection. As a result, the cm-scale analysis of topographic signatures can detect and quantify surface anomalies during geomorphic evolution. This review focuses on the use of UAS photogrammetry for fine spatial (cm) and temporal (hours to days) scale geomorphic analyses, and it highlights analytical approaches to detect and quantify surface processes that were previously elusive. The review provides insight into topographic change characterization with precise spatial validations applied to landscape processes in various fields, such as the cryosphere and geosphere, as well as anthropogenic earth processes and national security applications. This work sheds light on previously unexplored aspects of both natural and human-engineered environments, demonstrating the potential of UAS observations in change detection. Our discussion examines the emerging horizons of UAS-based change detection, including machine learning and LIDAR systems. In addition, our meta-analysis of spatial and temporal UAS-based observations highlights the new fine-scale niche of UAS-photogrammetry. This scale advancement sets a new frontier in change detection, offering exciting possibilities for the future of land surface analysis and environmental monitoring in the field of Earth Science.
    Type of Medium: Online Resource
    ISSN: 2504-446X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2934569-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: ACS Applied Materials & Interfaces, American Chemical Society (ACS), Vol. 7, No. 41 ( 2015-10-21), p. 22796-22806
    Type of Medium: Online Resource
    ISSN: 1944-8244 , 1944-8252
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2015
    detail.hit.zdb_id: 2467494-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Biogeosciences Vol. 18, No. 8 ( 2021-04-27), p. 2649-2662
    In: Biogeosciences, Copernicus GmbH, Vol. 18, No. 8 ( 2021-04-27), p. 2649-2662
    Abstract: Abstract. Unraveling the environmental controls influencing Arctic tundra productivity is paramount for advancing our predictive understanding of the causes and consequences of warming in tundra ecosystems and associated land–atmosphere feedbacks. This study focuses on aquatic emergent tundra plants, which dominate productivity and methane fluxes in the Arctic coastal plain of Alaska. In particular, we assessed how environmental nutrient availability influences production of biomass and greenness in the dominant aquatic tundra species: Arctophila fulva and Carex aquatilis. We sampled a total of 17 sites distributed across the Barrow Peninsula and Atqasuk, Alaska, following a nutrient gradient that ranged from sites with thermokarst slumping or urban runoff to sites with relatively low nutrient inputs. Employing a multivariate analysis, we explained the relationship of soil and water nutrients to plant leaf macro- and micro-nutrients. Specifically, we identified soil phosphorus as the main limiting nutrient factor given that it was the principal driver of aboveground biomass (R2=0.34, p=0.002) and normalized difference vegetation index (NDVI) (R2=0.47, p=0.002) in both species. Plot-level spectral NDVI was a good predictor of leaf P content for both species. We found long-term increases in N, P and Ca in C. aquatilis based on historical leaf nutrient data from the 1970s of our study area. This study highlights the importance of nutrient pools and mobilization between terrestrial–aquatic systems and their potential influence on productivity and land–atmosphere carbon balance. In addition, aquatic plant NDVI spectral responses to nutrients can serve as landscape hot-spot and hot-moment indicators of landscape biogeochemical heterogeneity associated with permafrost degradation, nutrient leaching and availability.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Cryosphere, Copernicus GmbH, Vol. 14, No. 2 ( 2020-02-05), p. 445-459
    Abstract: Abstract. This study investigates and compares soil moisture and hydrology projections of broadly used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff in land models. However, this study shows that most models project a long-term drying of the surface soil (0–20 cm) for the permafrost region despite increases in the net air–surface water flux (P-ET). Drying is generally explained by infiltration of moisture to deeper soil layers as the active layer deepens or permafrost thaws completely. Although most models agree on drying, the projections vary strongly in magnitude and spatial pattern. Land models tend to agree with decadal runoff trends but underestimate runoff volume when compared to gauge data across the major Arctic river basins, potentially indicating model structural limitations. Coordinated efforts to address the ongoing challenges presented in this study will help reduce uncertainty in our capability to predict the future Arctic hydrological state and associated land–atmosphere biogeochemical processes across spatial and temporal scales.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Global Change Biology Vol. 23, No. 3 ( 2017-03), p. 1128-1139
    In: Global Change Biology, Wiley, Vol. 23, No. 3 ( 2017-03), p. 1128-1139
    Abstract: Plant‐mediated CH 4 flux is an important pathway for land–atmosphere CH 4 emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long‐term effects of climate change. CH 4 fluxes were measured in situ during peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain, Carex aquatilis and Arctophila fulva , to assess the magnitude and species‐specific controls on CH 4 flux. Plant biomass was a strong predictor of A. fulva CH 4 flux while water depth and thaw depth were copredictors for C. aquatilis CH 4 flux. We used plant and environmental data from 1971 to 1972 from the historic International Biological Program ( IBP ) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species‐specific decadal‐scale changes in CH 4 fluxes. A ~60% increase in CH 4 flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. Despite covering only ~5% of the landscape, we estimate that aquatic C. aquatilis and A. fulva account for two‐thirds of the total regional CH 4 flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphere CH 4 emissions for this region, potentially acting as a positive feedback to climate warming.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Guilford Publications ; 2012
    In:  Psychiatry: Interpersonal and Biological Processes Vol. 75, No. 2 ( 2012-06), p. 120-134
    In: Psychiatry: Interpersonal and Biological Processes, Guilford Publications, Vol. 75, No. 2 ( 2012-06), p. 120-134
    Type of Medium: Online Resource
    ISSN: 0033-2747
    Language: English
    Publisher: Guilford Publications
    Publication Date: 2012
    detail.hit.zdb_id: 2039989-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 13 ( 2023-06-25), p. 3263-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 13 ( 2023-06-25), p. 3263-
    Abstract: Advances in deep learning and computer vision are making significant contributions to flood mapping, particularly when integrated with remotely sensed data. Although existing supervised methods, especially deep convolutional neural networks, have proved to be effective, they require intensive manual labeling of flooded pixels to train a multi-layer deep neural network that learns abstract semantic features of the input data. This research introduces a novel weakly supervised approach for pixel-wise flood mapping by leveraging multi-temporal remote sensing imagery and image processing techniques (e.g., Normalized Difference Water Index and edge detection) to create weakly labeled data. Using these weakly labeled data, a bi-temporal U-Net model is then proposed and trained for flood detection without the need for time-consuming and labor-intensive human annotations. Using floods from Hurricanes Florence and Harvey as case studies, we evaluated the performance of the proposed bi-temporal U-Net model and baseline models, such as decision tree, random forest, gradient boost, and adaptive boosting classifiers. To assess the effectiveness of our approach, we conducted a comprehensive assessment that (1) covered multiple test sites with varying degrees of urbanization, and (2) utilized both bi-temporal (i.e., pre- and post-flood) and uni-temporal (i.e., only post-flood) input. The experimental results showed that the proposed framework of weakly labeled data generation and the bi-temporal U-Net could produce near real-time urban flood maps with consistently high precision, recall, f1 score, IoU score, and overall accuracy compared with baseline machine learning algorithms.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...