GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Materials, Wiley, Vol. 33, No. 23 ( 2021-06)
    Abstract: Current synthetic elastomers suffer from the well‐known trade‐off between toughness and stiffness. By a combination of multiscale experiments and atomistic simulations, a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness is demonstrated. The designed elastomer comprises homogeneous networks with ultrastrong, reversible, and sacrificial octuple hydrogen bonding (HB), which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture. Strong HBs and corresponding nanodomains enhance the stiffness by restricting the network mobility, and at the same time improve the toughness by dissipating energy during the transformation between different configurations. In addition, the stiffness mismatch between the hard HB domain and the soft poly(dimethylsiloxane)‐rich phase promotes crack deflection and branching, which can further dissipate energy and alleviate local stress. These cooperative mechanisms endow the elastomer with both high fracture toughness (17016 J m −2 ) and high Young's modulus (14.7 MPa), circumventing the trade‐off between toughness and stiffness. This work is expected to impact many fields of engineering requiring elastomers with unprecedented mechanical performance.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Express, IOP Publishing, Vol. 12, No. 10 ( 2019-10-01), p. 102017-
    Type of Medium: Online Resource
    ISSN: 1882-0778 , 1882-0786
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2417569-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 17 ( 2022-09-01), p. 5483-5499
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 17 ( 2022-09-01), p. 5483-5499
    Abstract: The spatial and temporal variations in terrestrial carbon storage play a pivotal role in regulating future climate change. However, Earth system models (ESMs), which have coupled the terrestrial biosphere and atmosphere, show great uncertainty in simulating the global land carbon storage. Here, based on multiple global datasets and a traceability analysis, we diagnosed the uncertainty source of terrestrial carbon storage in 22 ESMs that participated in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The modeled global terrestrial carbon storage has converged among ESMs from CMIP5 (1936.9 ± 739.3 PgC) to CMIP6 (1774.4 ± 439.0 PgC) but is persistently lower than the observation-based estimates (2285 ± 669 PgC). By further decomposing terrestrial carbon storage into net primary production (NPP) and ecosystem carbon residence time ( τ E ), we found that the decreased intermodel spread in land carbon storage primarily resulted from more accurate simulations on NPP among ESMs from CMIP5 to CMIP6. The persistent underestimation of land carbon storage was caused by the biased τ E . In CMIP5 and CMIP6, the modeled τ E was far shorter than the observation-based estimates. The potential reasons for the biased τ E could be the lack of or incomplete representation of nutrient limitation, vertical soil biogeochemistry, and the permafrost carbon cycle. Moreover, the modeled τ E became the key driver for the intermodel spread in global land carbon storage in CMIP6. Overall, our study indicates that CMIP6 models have greatly improved the terrestrial carbon cycle, with a decreased model spread in global terrestrial carbon storage and less uncertain productivity. However, more efforts are needed to understand and reduce the persistent data–model disagreement on carbon storage and residence time in the terrestrial biosphere.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 13 ( 2015-07-01), p. 5217-5232
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 13 ( 2015-07-01), p. 5217-5232
    Abstract: Model intercomparisons and evaluations against observations are essential for better understanding of models’ performance and for identifying the sources of uncertainty in their output. The terrestrial vegetation carbon simulated by 11 Earth system models (ESMs) involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) was evaluated in this study. The simulated vegetation carbon was compared at three distinct spatial scales (grid, biome, and global) among models and against the observations (an updated database from Olson et al.’s “Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database”). Moreover, the underlying causes of the differences in the models’ predictions were explored. Model–data fit at the grid scale was poor but greatly improved at the biome scale. Large intermodel variability was pronounced in the tropical and boreal regions, where total vegetation carbon stocks were high. While 8 out of 11 ESMs reproduced the global vegetation carbon to within 20% uncertainty of the observational estimate (560 ± 112 Pg C), the simulated global totals varied nearly threefold between the models. The goodness of fit of ESMs in simulating vegetation carbon depended strongly on the spatial scales. Sixty-three percent of the variability in contemporary global vegetation carbon stocks across ESMs could be explained by differences in vegetation carbon residence time across ESMs (P & lt; 0.01). The analysis indicated that ESMs’ performance of vegetation carbon predictions can be substantially improved through better representation of plant longevity (i.e., carbon residence time) and its respective spatial distributions.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...