GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 17 ( 2009-09-01), p. 4459-4480
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 17 ( 2009-09-01), p. 4459-4480
    Abstract: This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical Africa. A state-of-the-art global model in a high-end computer framework is used to produce a three-member 73-yr ensemble run forced by observed SST to represent the control run. The AEJ as produced by the control is compared with the representation of the AEJ in the 40-yr ECMWF Re-Analysis (ERA-40) and other observational datasets and found to be very realistic. Five experiments are then performed, each represented by sets of three-member 22-yr-long (1980–2001) ensemble runs. The goal of the experiments is to investigate the role of meridional soil moisture gradients, different land surface properties, and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated land surface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients but a unique combination of geographical features present only in northern tropical Africa that causes and maintains the jet.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 20 ( 2016-10-15), p. 7345-7364
    Abstract: A series of stationary wave model (SWM) experiments are performed in which the boreal summer atmosphere is forced, over a number of locations in the continental United States, with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-hPa eddy streamfunction) is largely the same: a high anomaly forms over west-central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, similar results are found; imposing soil moisture dryness in the AGCM in different locations within the U.S. interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi River valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the U.S.–Canadian border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 10 ( 2022-05-15), p. 3075-3090
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 10 ( 2022-05-15), p. 3075-3090
    Abstract: Record-breaking heatwaves and wildfires immersed Siberia during the boreal spring of 2020 following an anomalously warm winter. Springtime heatwaves are becoming more common in the region, with statistically significant trends in the frequency, magnitude, and duration of heatwave events over the past four decades. Mechanisms by which the heatwaves occur and contributing factors differ by season. Winter heatwave frequency is correlated with the atmospheric circulation, particularly the Arctic Oscillation, while the frequency of heatwaves during the spring months is highly correlated with aspects of the land surface including snow cover, albedo, and latent heat flux. Idealized AMIP-style experiments are used to quantify the contribution of suppressed Arctic sea ice and snow cover over Siberia on the atmospheric circulation, surface energy budget, and surface air temperature in Siberia during the winter and spring of 2020. Sea ice concentration contributed to the strength of the stratospheric polar vortex and Arctic Oscillation during the winter months, thereby influencing the tropospheric circulation and surface air temperature over Siberia. Warm temperatures across the region resulted in an earlier-than-usual recession of the winter snowpack. The exposed land surface contributed to up to 20% of the temperature anomaly during the spring through the albedo feedback and changes in the ratio of the latent and sensible heat fluxes. This, in combination with favorable atmospheric circulation patterns, resulted in record-breaking heatwaves in Siberia in the spring of 2020.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 9 ( 2014-05-01), p. 3169-3207
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 9 ( 2014-05-01), p. 3169-3207
    Abstract: This article reviews the understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA Goddard Earth Observing System model, version 5 (GEOS-5). Key new results are 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave); 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST; and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in the understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 5 ( 2021-03), p. 1701-1723
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 5 ( 2021-03), p. 1701-1723
    Abstract: Much of the southeast United States experienced record dry conditions during September of 2019, with the area in abnormally dry to exceptional drought conditions growing from 25% at the beginning of the month to 80% by the end of the month. The drought ended just as abruptly due to above-normal rain that fell during the second half of October. In this study we employed MERRA-2 and the GEOS-5 AGCM to diagnose the underlying causes of the drought’s onset, maintenance, and demise. The basic approach involves performing a series of AGCM simulations in which the model is constrained to remain close to MERRA-2 over prespecified areas that are external to the drought region. The start of the drought appears to have been forced by anomalous heating in the central/western tropical Pacific that resulted in low-level anticyclonic flow and a tendency for descending motion over much of the Southeast. An anomalous ridge associated with a Rossby wave train (emanating from the Indian Ocean region) is found to be the main source of the most intense temperature and precipitation anomalies that develop over the Southeast during the last week of September. A second Rossby wave train (emanating from the same region) is responsible for the substantial rain that fell during the second half of October to end the drought. The links to the Indian Ocean dipole (with record positive values) as well as a waning El Niño allow some speculation as to the likelihood of similar events occurring in the future.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Climate Vol. 17, No. 3 ( 2004-02), p. 485-503
    In: Journal of Climate, American Meteorological Society, Vol. 17, No. 3 ( 2004-02), p. 485-503
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Climate Vol. 21, No. 4 ( 2008-02-15), p. 802-816
    In: Journal of Climate, American Meteorological Society, Vol. 21, No. 4 ( 2008-02-15), p. 802-816
    Abstract: This study examines the predictability of seasonal mean Great Plains precipitation using an ensemble of century-long atmospheric general circulation model (AGCM) simulations forced with observed sea surface temperatures (SSTs). The results show that the predictability (intraensemble spread) of the precipitation response to SST forcing varies on interannual and longer time scales. In particular, this study finds that pluvial conditions are more predictable (have less intraensemble spread) than drought conditions. This rather unexpected result is examined in the context of the physical mechanisms that impact precipitation in the Great Plains. These mechanisms include El Niño–Southern Oscillation’s impact on the planetary waves and hence the Pacific storm track (primarily during the cold season), the role of Atlantic SSTs in forcing changes in the Bermuda high and low-level moisture flux into the continent (primarily during the warm season), and soil moisture feedbacks (primarily during the warm season). It is found that the changes in predictability are primarily driven by changes in the strength of the land–atmosphere coupling, such that under dry conditions a given change in soil moisture produces a larger change in evaporation and hence precipitation than the same change in soil moisture would produce under wet soil conditions. The above changes in predictability are associated with a negatively skewed distribution in the seasonal mean precipitation during the warm season—a result that is not inconsistent with the observations.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 14 ( 2020-07-15), p. 6229-6253
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 14 ( 2020-07-15), p. 6229-6253
    Abstract: Rapid-onset droughts, known as flash droughts, can have devastating impacts on agriculture, water resources, and ecosystems. The ability to predict flash droughts in advance would greatly enhance our preparation for them and potentially mitigate their impacts. Here, we investigate the prediction skill of the extreme 2012 flash drought over the U.S. Great Plains at subseasonal lead times (3 weeks or more in advance) in global forecast systems participating in the Subseasonal Experiment (SubX). An additional comprehensive set of subseasonal hindcasts with NASA’s GEOS model, a SubX model with relatively high prediction skill, was performed to investigate the separate contributions of atmospheric and land initial conditions to flash drought prediction skill. The results show that the prediction skill of the SubX models is quite variable. While skillful predictions are restricted to within the first two forecast weeks in most models, skill is considerably better (3–4 weeks or more) for certain models and initialization dates. The enhanced prediction skill is found to originate from two robust sources: 1) accurate soil moisture initialization once dry soil conditions are established, and 2) the satisfactory representation of quasi-stationary cross-Pacific Rossby wave trains that lead to the rapid intensification of flash droughts. Evidence is provided that the importance of soil moisture initialization applies more generally to central U.S. summer flash droughts. Our results corroborate earlier findings that accurate soil moisture initialization is important for skillful subseasonal forecasts and highlight the need for additional research on the sources and predictability of drought-inducing quasi-stationary atmospheric circulation anomalies.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 4 ( 2019-02), p. 1081-1099
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 4 ( 2019-02), p. 1081-1099
    Abstract: Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the U.S. continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture–forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 15 ( 2023-08-01), p. 4837-4861
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 15 ( 2023-08-01), p. 4837-4861
    Abstract: Much of Siberia experienced exceptional warmth during the spring of 2020, which followed an unusually warm winter over the same region. Here, we investigate the drivers of the spring warmth from the perspective of atmospheric dynamics and remote influences, focusing on monthly-time-scale features of the event. We find that the warm anomalies were associated with separate quasi-stationary Rossby wave trains emanating from the North Atlantic in April and May. The wave trains are shown to be extreme manifestations of the dominant modes of spring subseasonal meridional wind variability over the Northern Hemisphere. Using a large ensemble of simulations from NASA’s GEOS atmospheric model, in which the model is constrained to remain close to observations over selected regions, we further elucidate the remote drivers of the unusual spring temperatures in Siberia. In both April and May, the wave trains were likely forced from an upstream region including eastern North America and the western North Atlantic. Analysis with a stationary wave model shows that transient vorticity flux forcing over and downwind of the North Atlantic, which is strongly related to storm activity caused by internal variability, is key to generating the wave trains, suggesting limited subseasonal predictability of the Rossby waves and hence the exceptional Siberian warmth. Our observational and model analyses also suggest that anomalous tropical atmospheric heating contributed to the unusual warmth in Siberia through a teleconnection involving upper-troposphere dynamics and the mean meridional circulation. This tropical–extratropical teleconnection offers a possible physical mechanism by which anthropogenic climate change influenced the extreme Siberian warmth.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...