GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (2)
Material
Language
Years
Subjects(RVK)
  • Physics  (2)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 10 ( 2010-05-15), p. 2612-2633
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 10 ( 2010-05-15), p. 2612-2633
    Abstract: The mechanisms leading to the onset of the African Humid Period (AHP) 14 500–11 000 yr ago are elucidated using two different climate–vegetation models in a suite of transient glacial–interglacial simulations covering the last 21 000 yr. A series of sensitivity experiments investigated three key mechanisms (local summer insolation and ice sheet evolution, vegetation–albedo–precipitation feedback, and CO2 increase via radiative forcing and fertilization) that control the climate–vegetation history over North Africa during the last glacial termination. The simulations showed that neither orbital forcing nor the remote forcing from the retreating ice sheets alone was able to trigger the rapid formation of the AHP. Only both forcing factors together can effectively lead to the formation of the AHP. The vegetation–albedo–precipitation feedback enhances the intensity of the monsoon and further accelerates the onset of the AHP. The experiments indicate that orbital forcing and vegetation–albedo–precipitation feedback alone are insufficient to trigger the rapid onset of the AHP. The sensitivity experiments further show that the increasing radiative forcing from rising CO2 concentrations had no significant impact on the temporal evolution of the African monsoon during the last deglaciation. However, the fertilization effect of CO2 is important for the terrestrial carbon storage. The modeling results are discussed and compared with paleoproxy records of the African monsoon system. It is concluded that the model results presented here do not lend support to the notion that simple insolation thresholds govern the abrupt transitions of North African vegetation during the early to middle Holocene.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 7 ( 2009-04-01), p. 1626-1640
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 7 ( 2009-04-01), p. 1626-1640
    Abstract: Transient climate model simulations covering the last 21 000 yr reveal that orbitally driven insolation changes in the Southern Hemisphere, combined with a rise in atmospheric pCO2, were sufficient to jump-start the deglacial warming around Antarctica without direct Northern Hemispheric triggers. Analyses of sensitivity experiments forced with only one external forcing component (greenhouse gases, ice-sheet forcing, or orbital forcing) demonstrate that austral spring insolation changes triggered an early retreat of Southern Ocean sea ice starting around 19–18 ka BP. The associated sea ice–albedo feedback and the subsequent increase of atmospheric CO2 concentrations helped to further accelerate the deglacial warming in the Southern Hemisphere. Implications for the interpretation of Southern Hemispheric paleoproxy records are discussed.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...