GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (4)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Physics Today Vol. 69, No. 11 ( 2016-11-01), p. 40-46
    In: Physics Today, AIP Publishing, Vol. 69, No. 11 ( 2016-11-01), p. 40-46
    Abstract: To mitigate climate change at local, regional, and global scales, we must begin to think beyond greenhouse gases.
    Type of Medium: Online Resource
    ISSN: 0031-9228 , 1945-0699
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2031187-4
    detail.hit.zdb_id: 208863-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Applied Meteorology and Climatology ( 2021-04-29)
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, ( 2021-04-29)
    Abstract: Extreme precipitation events are challenging to local and regional stakeholders across the United States. The Missouri River Basin (MoRB), covering an area over 1.29 million km 2 , is prone to extreme precipitation events. These events are exacerbated by the complex terrain in the west and the numerous weather and climate features which impact the region on a seasonal/annual basis (low-level jets, mesoscale convective systems, extreme cold air intrusions, etc.). Without an in-depth analysis of extreme precipitation in the MoRB, the evolving nature of extreme precipitation is not known. This warrants an analysis of extreme precipitation, especially relating to sub-annual variations when extreme precipitation is more impactful. To this end, data from 131 United States Historical Climatology Network (USHCN) stations were used to determine the nature of extreme precipitation from 1950 – 2019. Annual 99th percentile and annual station maximum precipitation events occur more frequently in the eastern MoRB than in the western MoRB, in line with the annual precipitation climatology. Results show that 99th percentile events and annual station maximum precipitation events are becoming more frequent across the MoRB. Through analysis of 3-month extreme precipitation trends, areas in the eastern and southern MoRB are shown to have an increasing event frequency and intensity. Frequency shifts in the 99th percentile events, however, have occurred across the entire region. The increasing frequency of extreme events in the western MoRB represent a significant change for the hydroclimate of the region. Overall, the results from this work show that MORB extreme precipitation has increased in frequency and intensity during the 1950 – 2019 period.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Applied Meteorology and Climatology Vol. 53, No. 6 ( 2014-06), p. 1506-1524
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 53, No. 6 ( 2014-06), p. 1506-1524
    Abstract: The artificially created region around the “Land between the Lakes” (LBL) in Kentucky represents unique land use and land cover (LULC) heterogeneities. Over a distance of 100 km, the LULC comprises artificially created open water bodies (i.e., two parallel large run-on-river dams separated by the LBL), mountainous terrain, forest cover, and extensive agricultural land. Such heterogeneities increase (decrease) moisture supply and sensible heat, resulting in a differential air mass boundary that helps to initiate (inhibit) convection. Hence, the LBL can potentially modify precipitation formation. Historical anecdotes reveal a tendency for storms to dissipate or reintensify near the LBL. The specific scientific question pursued in this study is therefore the following: Has the unique development of two parallel run-on-river reservoirs and the surrounding LULC heterogeneity modified storm patterns in the region? Ten storm events during the growing season were selected. Two additional events, observed by the newly established high-resolution Kentucky Mesonet network, were also considered. Radar reflectivity images were visually inspected to understand the evolution of convective cells that originated or were modified near the LBL. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to determine near-surface trajectories that led to the selected events. The spatial synoptic classification and merged Geostationary Operational Environmental Satellite (GOES) IR images were analyzed to determine the prevailing synoptic conditions on the event dates. Six storm events showed a pattern wherein the convective cells lost strength as it passed over the LBL in a northeasterly direction. In two events, Next Generation Weather Radar (NEXRAD) reflectivity imagery revealed enhancement of convection as the storm passed over the LBL toward the Mississippi valley. Further dissection of the storm morphology suggested that the thermodynamic environment may have played an important role for the eight events where modification of precipitation near LBL has been clearly observed.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Applied Meteorology and Climatology Vol. 62, No. 3 ( 2023-03), p. 393-409
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 62, No. 3 ( 2023-03), p. 393-409
    Abstract: The southern Great Plains (SGP) is defined by hydrometeorological swings between dry and wet extremes. These swings exacerbate the climatological gradients of moisture (from east to west) and temperature (from south to north), which can impact the agricultural production of the region. Thus, it is key to understand extremes to sustainably maintain agricultural success in the region. This study investigates the wet extremes, or extreme precipitation events, that have become more prominent in the last two decades. Data from 108 U.S. Historical Climatology Network stations were analyzed for the 1950–2020 period to detect changes in the frequency and magnitude of extreme precipitation events. Results show that changes in the magnitude of extreme precipitation are isolated and scattered across the SGP, with only the winter season showing regional shifts in extreme precipitation magnitude. Changes in the frequency of extreme precipitation events were noted across the entire SGP, although the changes in frequency are more notable in the eastern SGP than in the western SGP. Analysis shows that the increased number of events detected is driven more, but not exclusively, by the increasing spatial extent of individual extreme precipitation events than by an increased number of events. Overall, these results depict the changing nature of extreme precipitation within the SGP and differences in extreme precipitation between the eastern and western SGP.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...