GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (2)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Applied Meteorology and Climatology Vol. 61, No. 8 ( 2022-08), p. 1015-1027
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 61, No. 8 ( 2022-08), p. 1015-1027
    Abstract: Systematic analyses of the daytime and nocturnal precipitation changes provide a better understand of the impact of global warming on the environment. In this study, the daytime and nocturnal precipitation across China from 1990 to 2019 was analyzed using observational data from 698 meteorological stations. Both daytime and nocturnal precipitation have increased in the western parts of China (including the Continental basin, headwaters of the Yangtze River basin, and Yellow River basin), whereas the trends in the eastern part are more complex. Climatological differences between daytime and nocturnal precipitation in summer were more significant than in other seasons. We developed a Z index to quantify the diurnal differences of precipitation. The annual mean Z index of China is about −2%, and its long-term change on an annual basis increased at a rate of 0.06% yr −1 ( p 〈 0.1). The mean Z -index values during the year and seasons (except for summer) are negative and show an increasing trend. The intensity of the diurnal differences of precipitation has been decreasing in China since 1990. Topographic exposure and distance from the coast also influence the daytime and nocturnal precipitation changes. The Z index of the first-category stations (distance from the coast ≤ 100 km) was positively correlated with the distance from the coast ( r = 0.39; p 〈 0.001) in summer, which may result from the superposition of the summer monsoon and sea-breeze effects. Significance Statement The diurnal cycle of precipitation is an important indicator for diagnosing the impact of global warming on the environment. There is a slight annual difference between daytime and nocturnal precipitation in China. The nocturnal precipitation maximum is in winter, spring, and autumn and the opposite occurs in summer. We define a precipitation index to quantifying the intensity of the diurnal differences of precipitation. The mean precipitation index is negative annually and seasonally (except for summer), with an increasing trend indicating that the intensity of the diurnal differences of precipitation has decreased in China from 1990 to 2019. These results are valuable for understanding the impact of recent warming on the diurnal differences of precipitation in China.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2005
    In:  Applied Physics Letters Vol. 87, No. 12 ( 2005-09-19)
    In: Applied Physics Letters, AIP Publishing, Vol. 87, No. 12 ( 2005-09-19)
    Abstract: Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2005
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...