GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Natural Sciences  (1)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 11 ( 2022-03-15)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 11 ( 2022-03-15)
    Abstract: Understanding the mechanism of particle-based crystallization is a formidable problem due to the complexity of macroscopic and interfacial forces driving particle dynamics. The oriented attachment (OA) pathway presents a particularly challenging phenomenon because it occurs only under select conditions and involves a precise crystallographic alignment of particle faces often from distances of several nanometers. Despite the progress made in recent years in understanding the driving forces for particle face selectivity and alignment, questions about the competition between ion-by-ion crystallization, near-surface nucleation, and OA remain. This study examines hydrothermal conditions leading to apparent OA for hematite using three initial particle morphologies with various exposed faces. All three particle types formed single-crystal or twinned one-dimensional (1D) chain-like structures along the [001] direction driven by the attractive interactions between (001) faces and repulsive interactions between other pairs of hematite faces. Moreover, simulations of the potential of mean force for iron species and scanning transmission electron microscopy (S/TEM) imaging confirm that the formation of 1D chains is a result of the attachment of independently nucleated particles and does not follow the near-surface nucleation or ion-by-ion crystallization pathways. These results highlight that strong face specificity along one crystallographic direction can render OA to be independent of initial particle morphology.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...