GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 19 ( 2010-05-11), p. 8666-8671
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 19 ( 2010-05-11), p. 8666-8671
    Abstract: Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 26 ( 2017-06-27), p. 6770-6775
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 26 ( 2017-06-27), p. 6770-6775
    Abstract: Ubiquitin (Ub) is an important signaling protein. Recent studies have shown that Ub can be enzymatically phosphorylated at S65, and that the resulting pUb exhibits two conformational states—a relaxed state and a retracted state. However, crystallization efforts have yielded only the structure for the relaxed state, which was found similar to that of unmodified Ub. Here we present the solution structures of pUb in both states obtained through refinement against state-specific NMR restraints. We show that the retracted state differs from the relaxed state by the retraction of the last β-strand and by the extension of the second α-helix. Further, we show that at 7.2, the pK a value for the phosphoryl group in the relaxed state is higher by 1.4 units than that in the retracted state. Consequently, pUb exists in equilibrium between protonated and deprotonated forms and between retracted and relaxed states, with protonated/relaxed species enriched at slightly acidic pH and deprotonated/retracted species enriched at slightly basic pH. The heterogeneity of pUb explains the inability of phosphomimetic mutants to fully mimic pUb. The pH-sensitive conformational switch is likely preserved for polyubiquitin, as single-molecule FRET data indicate that pH change leads to quaternary rearrangement of a phosphorylated K63-linked diubiquitin. Because cellular pH varies among compartments and changes upon pathophysiological insults, our finding suggests that pH and Ub phosphorylation confer additional target specificities and enable an additional layer of modulation for Ub signals.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 551, No. 7680 ( 2017-11), p. 398-398
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 14 ( 2021-04-06)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 14 ( 2021-04-06)
    Abstract: One third of the western population suffers from nonalcoholic fatty liver disease (NAFLD), which may ultimately develop into hepatocellular carcinoma (HCC). The molecular event(s) that triggers the disease are not clear. Current understanding, known as the multiple hits model, suggests that NAFLD is a result of diverse events at several tissues (e.g., liver, adipose tissues, and intestine) combined with changes in metabolism and microbiome. In contrast to this prevailing concept, we report that fatty liver could be triggered by a single mutated protein expressed only in the liver. We established a transgenic system that allows temporally controlled activation of the MAP kinase p38α in a tissue-specific manner by induced expression of intrinsically active p38α allele. Here we checked the effect of exclusive activation in the liver. Unexpectedly, induction of p38α alone was sufficient to cause macrovesicular fatty liver. Animals did not become overweight, showing that fatty liver can be imposed solely by a genetic modification in liver per se and can be separated from obesity. Active p38α-induced fatty liver is associated with up-regulation of MUC13, CIDEA, PPARγ, ATF3, and c-jun mRNAs, which are up-regulated in human HCC. Shutting off expression of the p38α mutant resulted in reversal of symptoms. The findings suggest that p38α plays a direct causative role in fatty liver diseases and perhaps in other chronic inflammatory diseases. As p38α activity was induced by point mutations, it could be considered a proto-inflammatory gene (proto-inflammagene).
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 1999
    In:  Annals of the New York Academy of Sciences Vol. 888, No. 1 ( 1999-11), p. 113-120
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 888, No. 1 ( 1999-11), p. 113-120
    Abstract: ABSTRACT: Although there have been great advances in the treatment of electrical injuries in the last 20 years, the extremity loss ratio in electrical injuries remains at an unacceptably high level. The primary reason for this is the progressive tissue necrosis and enlargement of the necrosis in the wound. The goal in this study is to examine possible ways to break the necrotic malignancy circle and save the form and function of damaged extremities. As a result of systematic experimental and clinical research, a comprehensive urgent reconstruction alternative for electrical injuries has been proposed. The alternative includes the following principles: debriding the wound as early as possible after injury; preserving as much as possible the vital tissue structures, such as nerve, vessels, joints, tendons, and bone, even when they have undergone devitalization or local necrosis; transplanting these vital tissues during the first surgery if the functional reconstruction requires; nourishing the wound bed by covering with tissue flaps that have rich blood supply; improving flap survival by continuous irrigations with a compound medicine beneath the flaps for a 24‐ to 72‐hour period after surgery; providing general treatment with vasoactive agents and antibiotics. This paper summarizes our experience of using this method in the treatment of 105 electrical injury patients (a total of 309 wounds) in the time period from 1 January 1986 to 31 December 1996. Satisfying results were obtained, with the extremity loss ratio decreasing to 7% as compared to 41.5% during the 10 years preceding 1984 at the same hospital. Thus, the urgent comprehensive reconstruction alternative presented here is an effective and workable method to manage electrical injuries.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 1999
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 42 ( 2014-10-21), p. 15031-15035
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 42 ( 2014-10-21), p. 15031-15035
    Abstract: Understanding thermal and phonon transport in solids has been of great importance in many disciplines such as thermoelectric materials, which usually requires an extremely low lattice thermal conductivity (LTC). By analyzing the finite-temperature structural and vibrational characteristics of typical thermoelectric compounds such as filled skutterudites and Cu 3 SbSe 3 , we demonstrate a concept of part-crystalline part-liquid state in the compounds with chemical-bond hierarchy, in which certain constituent species weakly bond to other part of the crystal. Such a material could intrinsically manifest the coexistence of rigid crystalline sublattices and other fluctuating noncrystalline sublattices with thermally induced large-amplitude vibrations and even flow of the group of species atoms, leading to atomic-level heterogeneity, mixed part-crystalline part-liquid structure, and thus rattling-like thermal damping due to the collective soft-mode vibrations similar to the Boson peak in amorphous materials. The observed abnormal LTC close to the amorphous limit in these materials can only be described by an effective approach that approximately treats the rattling-like damping as a “resonant” phonon scattering.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2000
    In:  Nature Vol. 407, No. 6806 ( 2000-10), p. 920-923
    In: Nature, Springer Science and Business Media LLC, Vol. 407, No. 6806 ( 2000-10), p. 920-923
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2000
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Nature Vol. 549, No. 7671 ( 2017-09-14), p. 247-251
    In: Nature, Springer Science and Business Media LLC, Vol. 549, No. 7671 ( 2017-09-14), p. 247-251
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2002
    In:  Science Vol. 298, No. 5592 ( 2002-10-11), p. 422-424
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 298, No. 5592 ( 2002-10-11), p. 422-424
    Abstract: We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR null mice, and the CAR null mice were resistant to acetaminophen toxicity. Inhibition of CAR activity by administration of the inverse agonist ligand androstanol 1 hour after acetaminophen treatment blocked hepatotoxicity in wild type but not in CAR null mice. These results suggest an innovative therapeutic approach for treating the adverse effects of acetaminophen and potentially other hepatotoxic agents.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 9 ( 2013-02-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 9 ( 2013-02-26)
    Abstract: In the present study, we found that the level of BMP4 in human white adipose tissue is inversely associated with fat mass. Mice with overexpressed or absent BMP4 in white adipose tissue revealed that BMP4 induces brown fat-like changes in white adipose tissue in addition to altering metabolism and insulin sensitivity. Therefore, we showed that BMP4-mediated expression of PGC1α proceeds through the p38/MAPK/ATF2 pathway ( Fig. P1 ). These findings indicate that manipulation of BMP4 expression in white adipose tissue may serve as a therapeutic target for the prevention and/or treatment of obesity and its metabolic complications. We then explored the molecular mechanism of BMP4-induced brown adipose-like changes in white adipose tissue and found that peroxisome proliferator-activated receptor γ coactivator α (PGC1α) was the key regulator during the program. We further demonstrated that activation of the p38/MAPK/activating transcription factor 2 (ATF2) pathway and PGC1α expression by BMP4 play an important role in the induction of white adipose tissue into brown adipose-like tissue. Two mouse models were used in the present study: the BMP4 transgenic mouse in which BMP4 was specifically overexpressed and a knockout mouse in which BMP4 was specifically knocked out in adipose tissue. We assessed the phenotype of adipose tissue and the systematical metabolic alteration in these mice. Our findings revealed that the forced expression of BMP4 in white adipose tissue promotes the acquisition of brown fat-like characteristics, including decreased adipocyte size and lipid droplets, increased mitochondrial biogenesis, and the increased expression of fatty acid-oxidizing genes. Changes in adipose tissue resulted in a systematical increase in basal respiratory rate, increased insulin sensitivity, and decreased blood fat. Similarly, cell culture experiments revealed that treatment with BMP4 during 3T3-L1 adipocyte differentiation leads to a gene-expression profile similar to that of brown fat cells. More importantly, overexpression of BMP4 in white adipose tissue improves insulin sensitivity and protects against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology, increased blood fat, and impaired insulin sensitivity. These results reveal an interesting role for BMP4 in the regulation of adipogenesis and metabolism. White adipose tissue stores energy in the form of triglycerides. However, the increases in cell division or cell size (i.e., hyperplasia and hypertrophy, respectively) of adipocytes that accompany the excessive accumulation of body fat are associated with insulin resistance, type 2 diabetes, and an inflammatory response ( 1 ). In contrast, brown adipose tissue dissipates energy as heat by means of mitochondrial uncoupling protein 1. Promotion of brown adipose tissue activity helps prevent genetic obesity in rodents ( 2 ). Recent studies have identified metabolically active fat cells, known as “brite” (brown-in-white) or “beige” adipocytes, in white fat deposits in both mice and humans ( 3 ). The number of active brown adipose tissue cells is inversely correlated with BMI in humans ( 4 ). Therefore, the identification of factors that induce brown-like fat cells in white adipose tissue could suggest an approach to preventing and/or treating obesity and its metabolic complications. We previously found that BMP4 induces multipotent C3H10T1/2 stem cells to become preadipocytes ( 5 ). Our present findings reveal that the level of BMP4 in human white adipose tissue is inversely associated with BMI, and we explore whether BMP4 regulates the terminal differentiation and metabolic function of adipocytes. Two types of fat storage cells, known as “adipocytes,” coordinately regulate energy balance in humans and other mammals. White adipocytes are specialized to store energy, whereas brown adipocytes produce heat. Promotion of brown adipocyte activity in white adipose tissue helps prevent obesity and its metabolic complications. Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family, which is part of the TGF-β superfamily. BMP4 is essential for embryonic formation and is involved in the development of tissues such as bone and muscle, teeth, and neurons. In the present study, we found that the level of BMP4 in human white adipose tissue is inversely associated with body mass index (BMI). The BMP4 protein also was shown to induce brown adipose tissue-like changes in white adipose tissue, and to increase glucose and energy expenditure in mice models.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...