GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 23 ( 2020-06-09), p. 12891-12896
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 23 ( 2020-06-09), p. 12891-12896
    Abstract: A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tro pical pelagic diversity to a level not seen in millions of years.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 41 ( 2016-10-11), p. 11549-11554
    Abstract: Most cases of oral squamous cell carcinoma (OSCC) develop from visible oral potentially malignant disorders (OPMDs). The latter exhibit heterogeneous subtypes with different transformation potentials, complicating the early detection of OSCC during routine visual oral cancer screenings. To develop clinically applicable biomarkers, we collected saliva samples from 96 healthy controls, 103 low-risk OPMDs, 130 high-risk OPMDs, and 131 OSCC subjects. These individuals were enrolled in Taiwan’s Oral Cancer Screening Program. We identified 302 protein biomarkers reported in the literature and/or through in-house studies and prioritized 49 proteins for quantification in the saliva samples using multiple reaction monitoring-MS. Twenty-eight proteins were successfully quantified with high confidence. The quantification data from non-OSCC subjects (healthy controls + low-risk OPMDs) and OSCC subjects in the training set were subjected to classification and regression tree analyses, through which we generated a four-protein panel consisting of MMP1, KNG1, ANXA2, and HSPA5. A risk-score scheme was established, and the panel showed high sensitivity (87.5%) and specificity (80.5%) in the test set to distinguish OSCC samples from non-OSCC samples. The risk score 〉 0.4 detected 84% (42/50) of the stage I OSCCs and a significant portion (42%) of the high-risk OPMDs. Moreover, among 88 high-risk OPMD patients with available follow-up results, 18 developed OSCC within 5 y; of them, 77.8% (14/18) had risk scores 〉 0.4. Our four-protein panel may therefore offer a clinically effective tool for detecting OSCC and monitoring high-risk OPMDs through a readily available biofluid.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 616, No. 7958 ( 2023-04-27), p. 686-690
    Abstract: The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation 1,2 . Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole 3 . Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of $${8.4}_{-1.1}^{+0.5}$$ 8.4 − 1.1 + 0.5 Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 34 ( 2015-08-25), p. 10611-10616
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 34 ( 2015-08-25), p. 10611-10616
    Abstract: Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 20 ( 2012-05-15), p. 7770-7775
    Abstract: Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress, but the mechanism of force-specific activation of their signaling to modulate cellular function remains unclear. We have demonstrated that bone morphogenetic protein receptor (BMPR)-specific Smad1/5 can be force-specifically activated by oscillatory shear stress (OSS) in ECs to cause cell cycle progression. Smad1/5 is highly activated in ECs of atherosclerotic lesions in diseased human coronary arteries from patients with end-stage heart failure undergoing heart transplantation and from apolipoprotein E-deficient mice. Application of OSS (0.5 ± 4 dyn/cm 2 ) causes the sustained activation of Smad1/5 in ECs through activations of mammalian target of rapamycin and p70S6 kinase, leading to up-regulation of cyclin A and down-regulations of p21 CIP1 and p27 KIP1 and, hence, EC cycle progression. En face examination of rat aortas reveals high levels of phospho-Smad1/5 in ECs of the straight segment of thoracic aorta and the inner, but not the outer, curvature of aortic arch. Immunohistochemical and en face examinations of the experimentally stenosed abdominal aorta in rats show high levels of phospho-Smad1/5 in ECs at poststenotic sites, where OSS occurs. These OSS activations of EC Smad1/5 in vitro and in vivo are not inhibited by the BMP-specific antagonist Noggin and, hence, are independent of BMP ligand. Transfecting ECs with Smad1/5-specific small interfering RNAs inhibits the OSS-induced EC cycle progression. Our findings demonstrate the force-specificity of the activation of Smad1/5 and its contribution to cell cycle progression in ECs induced by disturbed flow.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 349, No. 6247 ( 2015-07-31), p. 524-528
    Abstract: Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS 2 and tungsten sulfide WSe 2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe 2 -MoS 2 heterojunction, where the edge of WSe 2 induces the epitaxial MoS 2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, Springer Science and Business Media LLC, Vol. 604, No. 7906 ( 2022-04-21), p. 502-508
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 2 ( 2012-01-10)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 2 ( 2012-01-10)
    Abstract: The effects of SP that we show are essentially opposite the role that SP previously has been proposed to play. Many pharmaceutical companies have developed NK1 antagonist programs based on the idea that SP signaling promotes pain ( 5 ). Given the specific antinociceptive effect of SP on muscle nociceptors, NK1 receptor antagonists actually might worsen muscle pain, compromising their clinical efficacy in treating pain. Our finding offers insight for ongoing clinical trials testing NK1 antagonists in fibromyalgia patients. In particular, blocking SP–NK1 signaling might increase the risk of muscle-originated, chronic hyperalgesia. In contrast, local application of SP might relieve muscle pain. Thus, we uncovered an unexpected antinociceptive role for SP in muscle nociceptors that involves an unconventional NK1 signal pathway. Intramuscular release of SP seems to play an important physiological role in nociceptive plasticity by limiting the acid-induced referred and mirror-image hyperalgesia to a transient effect. The antinociceptive effect of SP seems to be mediated by reducing acid-induced depolarization occurring through ion channels in ASIC3-expressing muscle nociceptors. Our results suggest a model in which activation of acid-sensitive muscle nociceptors triggers the local release of SP, and the local release of SP attenuates acid-induced depolarization by triggering an M channel-like activity ( Fig. P1 ). The effect involves NK1 receptors and a tyrosine kinase but not G proteins. SP causes a slow inactivating outward current ( I SP-O ) in these muscle nociceptors. The I SP-O hyperpolarizes muscle nociceptors and thus can reduce acid-induced inward current and pain. Therefore we next examined the downstream effectors of SP signaling. This outward current is blocked by antagonists to NK1 and, unlike other G protein-coupled receptors, is not decreased substantially after repeated SP administration. Similar to the SP effect on ASIC3-mediated current, the I SP-O current is not altered by GDP-β-S, again suggesting that G proteins do not play a role in the SP signaling. Moreover, I SP-O is blocked by inhibitors of tyrosine kinases (important enzymes that add phosphorous-signaling molecules to tyrosine residues of other proteins) and is enhanced by a reagent that inhibits the removal of phosphorous molecules. This result suggests the involvement of protein tyrosine kinase. We further demonstrated that the downstream effector of this I SP-O current is an M-type potassium channel. Selective M-channel blockers significantly inhibit I SP-O . Consistent with these in vitro data, coinjection of acid with M-channel blockers into muscle produces a hyperalgesic effect, similar to the effect of the NK1 antagonist. To probe the antinociceptive role of SP in muscles, we used electrophysiological recordings to examine whether SP affects acid-induced cell depolarization in muscle nociceptors. We found that SP selectively reduces the acid-induced inward current in ASIC3-expressing muscle nociceptors but not in other sensory neurons. This cell-type–specific effect relies on neurokinin 1 (NK1) receptors, normally known as “G protein-coupled receptors.” However, the effect of SP on ASIC3-mediated current was resistant to GDP-β-S dialysis, indicating that NK1 receptors are involved but G protein is not. Ion channels play a crucial role in neuronal signaling and activation by allowing neuron polarization to change. Some of these channels respond to changes in acid levels, and one such channel—acid-sensing ion channel 3 (ASIC3)—has been found to be necessary for the development of muscle pain ( 3 ). Further studies have suggested a role for SP in pain sensitivity ( 4 ). SP is a small protein generated in pain receptor neurons (or nociceptors) and released in response to painful stimulation. As described by Sluka et al. ( 2 , 3 ), an acid injection into the muscle of a hind limb causes referred hyperalgesia in the hind paw on the same side and a mirror image of hyperalgesia in the paw on the opposite site. Referred and mirror-image hyperalgesia decreased after 24 h in normal or wild-type mice but persisted for a long time when SP receptors in the injected muscle were blocked or when SP signaling was disrupted. Muscle pain that occurs in common disorders such as ischemia (poor blood flow) and fibromyalgia (a condition of widespread pain) can pose a significant clinical problem, but the reasons for this pain are not fully understood ( 1 ). Studies have shown that dual intramuscular injections of an acidic solution spaced 5 d apart lead to chronic (or long-lasting) hyperalgesia, [i.e., extreme pain sensitivity ( 2 )], but the f ull mechanisms have yet to be elucidated completely. Here, we evaluated the role of a neurotransmitter (a molecule involved in transmission of signals between neurons) called “substance P” (SP) in the development of hyperalgesia following repeated injections of an acidic solution into muscles. We identified an antinociceptive (pain-reducing) effect of SP that contradicts current assumptions made in anti-pain drug research.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 49 ( 2020-12-08), p. 31267-31277
    Abstract: Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species ( Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 4 ( 2021-01-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 4 ( 2021-01-26)
    Abstract: Spatially concentrating and manipulating biotherapeutic agents within the circulatory system is a longstanding challenge in medical applications due to the high velocity of blood flow, which greatly limits drug leakage and retention of the drug in the targeted region. To circumvent the disadvantages of current methods for systemic drug delivery, we propose tornado-inspired acoustic vortex tweezer (AVT) that generates net forces for noninvasive intravascular trapping of lipid-shelled gaseous microbubbles (MBs). MBs are used in a diverse range of medical applications, including as ultrasound contrast agents, for permeabilizing vessels, and as drug/gene carriers. We demonstrate that AVT can be used to successfully trap MBs and increase their local concentration in both static and flow conditions. Furthermore, MBs signals within mouse capillaries could be locally improved 1.7-fold and the location of trapped MBs could still be manipulated during the initiation of AVT. The proposed AVT technique is a compact, easy-to-use, and biocompatible method that enables systemic drug administration with extremely low doses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...