GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 370, No. 6514 ( 2020-10-16), p. 342-346
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 370, No. 6514 ( 2020-10-16), p. 342-346
    Abstract: Low-grade heat (below 373 kelvin) is abundant and ubiquitous but is mostly wasted because present recovery technologies are not cost-effective. The liquid-state thermocell (LTC), an inexpensive and scalable thermoelectric device, may be commercially viable for harvesting low-grade heat energy if its Carnot-relative efficiency (η r ) reaches ~5%, which is a challenging metric to achieve experimentally. We used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (~3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs. As a result, we achieved a high η r of 11.1% for LTCs near room temperature. Our device demonstration offers promise for cost-effective low-grade heat harvesting.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 7 ( 2021-02-16)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 7 ( 2021-02-16)
    Abstract: Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 ( Mediator of paramutation1 ), as well as a mutation in a component of the trans -acting small interference RNA biogenesis pathway, Lbl1 ( Leafbladeless1 ). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 549, No. 7671 ( 2017-9), p. 273-276
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 38 ( 2023-09-19)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 38 ( 2023-09-19)
    Abstract: Cherenkov radiation occurs only when a charged particle moves with a velocity exceeding the phase velocity of light in that matter. This radiation mechanism creates directional light emission at a wide range of frequencies and could facilitate the development of on-chip light sources except for the hard-to-satisfy requirement for high-energy particles. Creating Cherenkov radiation from low-energy electrons that has no momentum mismatch with light in free space is still a long-standing challenge. Here, we report a mechanism to overcome this challenge by exploiting a combined effect of interfacial Cherenkov radiation and umklapp scattering, namely the constructive interference of light emission from sequential particle–interface interactions with specially designed (umklapp) momentum-shifts. We find that this combined effect is able to create the interfacial Cherenkov radiation from ultralow-energy electrons, with kinetic energies down to the electron-volt scale. Due to the umklapp scattering for the excited high-momentum Bloch modes, the resulting interfacial Cherenkov radiation is uniquely featured with spatially separated apexes for its wave cone and group cone.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 6 ( 2018-02-06), p. 1388-1393
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 6 ( 2018-02-06), p. 1388-1393
    Abstract: RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 34 ( 2023-08-22)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 34 ( 2023-08-22)
    Abstract: Abscisic acid (ABA), a classical plant hormone, plays an essential role in plant adaptation to environmental stresses. The ABA signaling mechanisms have been extensively investigated, and it was shown that the PYR1 (PYRABACTIN RESISTANCE1)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) ABA receptors, the PP2C coreceptors, and the SnRK2 protein kinases constitute the core ABA signaling module responsible for ABA perception and initiation of downstream responses. We recently showed that ABA signaling is modulated by light signals, but the underlying molecular mechanisms remain largely obscure. In this study, we established a system in yeast cells that was not only successful in reconstituting a complete ABA signaling pathway, from hormone perception to ABA-responsive gene expression, but also suitable for functionally characterizing the regulatory roles of additional factors of ABA signaling. Using this system, we analyzed the roles of several light signaling components, including the red and far-red light photoreceptors phytochrome A (phyA) and phyB, and the photomorphogenic central repressor COP1, in the regulation of ABA signaling. Our results showed that both phyA and phyB negatively regulated ABA signaling, whereas COP1 positively regulated ABA signaling in yeast cells. Further analyses showed that photoactivated phyA interacted with the ABA coreceptors ABI1 and ABI2 to decrease their interactions with the ABA receptor PYR1. Together, data from our reconstituted yeast ABA signaling system provide evidence that photoactivated photoreceptors attenuate ABA signaling by directly interacting with the key components of the core ABA signaling module, thus conferring enhanced ABA tolerance to light-grown plants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 366, No. 6469 ( 2019-11-29), p. 1095-1098
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 366, No. 6469 ( 2019-11-29), p. 1095-1098
    Abstract: The creation of nanostructures with precise chemistries on material surfaces is of importance in a wide variety of areas such as lithography, superhydrophobicity, and cell adhesion. We describe a platform for surface functionalization that involves the fabrication of cylindrical micellar brushes on a silicon wafer through seeded growth of crystallizable block copolymers at the termini of immobilized, surface-confined crystallite seeds. The density, length, and coronal chemistry of the micellar brushes can be precisely tuned, and post-growth decoration with nanoparticles enables applications in catalysis and antibacterial surface modification. The micellar brushes can also be grown on ultrathin two-dimensional materials such as graphene oxide nanosheets and further assembled into a membrane for the separation of oil-in-water emulsions and gold nanoparticles.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 348, No. 6230 ( 2015-04-03), p. 120-123
    Abstract: Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5′-3′ and 3′-5′ cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...