GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 31 ( 2009-08-04), p. 12794-12797
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 31 ( 2009-08-04), p. 12794-12797
    Abstract: DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions ( atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL + matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 16 ( 2012-04-17), p. 6241-6246
    Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi , the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1990
    In:  Nature Vol. 346, No. 6281 ( 1990-7), p. 277-279
    In: Nature, Springer Science and Business Media LLC, Vol. 346, No. 6281 ( 1990-7), p. 277-279
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1990
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 46 ( 2017-11-14)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 46 ( 2017-11-14)
    Abstract: A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus–cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus–cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix–gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 50 ( 2018-12-11), p. 12805-12810
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 50 ( 2018-12-11), p. 12805-12810
    Abstract: Noncoding RNAs have substantial effects in host–virus interactions. Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs which can decoy other RNAs or RNA-binding proteins to inhibit their functions. The role of circRNAs is largely unknown in the context of Kaposi’s sarcoma herpesvirus (KSHV). We hypothesized that circRNAs influence viral infection by inhibiting host and/or viral factors. Transcriptome analysis of KSHV-infected primary endothelial cells and a B cell line identified human circRNAs that are differentially regulated upon infection. We confirmed the expression changes with divergent PCR primers and RNase R treatment of specific circRNAs. Ectopic expression of hsa_circ_0001400, a circRNA induced by infection, suppressed expression of key viral latent gene LANA and lytic gene RTA in KSHV de novo infections. Since human herpesviruses express noncoding RNAs like microRNAs, we searched for viral circRNAs encoded in the KSHV genome. We performed circRNA-Seq analysis with RNase R-treated, circRNA-enriched RNA from KSHV-infected cells. We identified multiple circRNAs encoded by the KSHV genome that are expressed in KSHV-infected endothelial cells and primary effusion lymphoma (PEL) cells. The KSHV circRNAs are located within ORFs of viral lytic genes, are up-regulated upon the induction of the lytic cycle, and alter cell growth. Viral circRNAs were also detected in lymph nodes from patients of KSHV-driven diseases such as PEL, Kaposi’s sarcoma, and multicentric Castleman’s disease. We revealed new host–virus interactions of circRNAs: human antiviral circRNAs are activated in response to KSHV infection, and viral circRNA expression is induced in the lytic phase of infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1999
    In:  Proceedings of the National Academy of Sciences Vol. 96, No. 12 ( 1999-06-08), p. 7017-7022
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 96, No. 12 ( 1999-06-08), p. 7017-7022
    Abstract: We describe combined analytic and experimental methods for determining reproductive statistics from time-series data. Our computational methods derive four fundamental measures from laboratory experiments: ( i ) average number of viral daughters; ( ii ) mean viral cycle time; ( iii ) standard deviation of the viral cycling time; and ( iv ) viral doubling time. Taken together, these four reproductive statistics characterize “age-specific fertility,” a quantity that provides complete information on the reproduction of the average viral particle. In this paper, we emphasize applications relating to HIV and experiments for assessing cellular tropism, viral phenotypes, antiviral drugs, humoral immunity, and cytotoxic cellular immunity. Nevertheless, our method is quite flexible and applicable to the evaluation of drugs against bacterial, fungal, and parasitic infections, antineoplastic agents against cancer cells, and perturbations involving pest and wildlife releases in ecosystems.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1999
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...