GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 3 ( 2015-01-20), p. 857-862
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 3 ( 2015-01-20), p. 857-862
    Abstract: Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 44 ( 2007-10-30), p. 17347-17352
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 44 ( 2007-10-30), p. 17347-17352
    Abstract: Quadruplex ligands are often considered as telomerase inhibitors. Given the fact that some of these molecules are present in the clinical setting, it is important to establish the validity of this assertion. To analyze the effects of these compounds, we used a direct assay with telomerase-enriched extracts. The comparison of potent ligands from various chemical families revealed important differences in terms of effects on telomerase initiation and processivity. Although most quadruplex ligands may lock a quadruplex-prone sequence into a quadruplex structure that inhibits the initiation of elongation by telomerase, the analysis of telomerase-elongation steps revealed that only a few molecules interfered with the processivity of telomerase (i.e., inhibit elongation once one or more repeats have been incorporated). The demonstration that these molecules are actually more effective inhibitors of telomeric DNA amplification than extension by telomerase contributes to the already growing suspicion that quadruplex ligands are not simple telomerase inhibitors but, rather, constitute a different class of biologically active molecules. We also demonstrate that the popular telomeric repeat amplification protocol is completely inappropriate for the determination of telomerase inhibition by quadruplex ligands, even when PCR controls are included. As a consequence, the inhibitory effect of many quadruplex ligands has been overestimated.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 26 ( 2018-06-26), p. 6828-6833
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 26 ( 2018-06-26), p. 6828-6833
    Abstract: Phosphopantetheinyl transferases (PPTases) are a superfamily of essential enzymes required for the synthetic processes of many compounds including fatty acid, polyketide, and nonribosomal peptide metabolites. These enzymes activate carrier proteins in specific biosynthetic pathways via the transfer of a phosphopantetheinyl moiety to a serine residue in the conserved motif of carrier proteins. Since many Actinomycetales microorganisms produce a number of polyketide and nonribosomal peptide metabolites, the distribution of PPTase genes was investigated in these microorganisms. PPTases were found in bacterial protein databases using a hidden Markov model search with the PF01648 (4′-phosphopantetheinyl transferase superfamily) model. Actinomycetales microorganisms harbor several genes encoding AcpS-type and Sfp-type PPTases in individual genomes, many of which were associated with the biosynthetic gene cluster for polyketide or nonribosomal peptide metabolites. The properties of these PPTases were evaluated in the heterologous expression system using the biosynthetic gene clusters and genes encoding PPTases found in the present study. Sfp-type PPTases were classified into two subgroups, and although the substrate specificities of the enzymes in one subgroup were wide, the catalytic activities of enzymes in the other subgroup were low. SAV_1784 of Streptomyces avermitilis possessed the most characteristic broad-range activity against several type I polyketide synthases and nonribosomal peptide synthetases.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 1 ( 2016-01-05)
    Abstract: Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver ( L Mob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. L Mob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial–mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-β)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 ( Yap1 ) and partially dependent on PDZ-binding motif ( Taz ) and Tgfbr2, but independent of connective tissue growth factor ( Ctgf ). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-β pathway may be effective treatment for cHC-CCs and ICCs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...