GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Natural Sciences  (1)
Material
Publisher
Language
Years
Subjects(RVK)
  • Natural Sciences  (1)
RVK
  • 1
    In: Annals of the New York Academy of Sciences, Wiley, Vol. 903, No. 1 ( 2000-04), p. 394-406
    Abstract: A bstract : Cholinesterase inhibitors used to treat Alzheimer's disease according to the principle of cholinergic replacement therapy have proved to be less beneficial than expected. The present study was designed to investigate the cerebrovascular response to physostigmine and tacrine in the experimental model of lesioning of the nucleus basalis magnocellularis (NBM), a model involving a cholinergic deficit. Regional cerebral blood flow was measured by the [ 14 C]iodoantipyrine tissue sampling technique in conscious rats infused with i.v. physostigmine (0.2 mg/kg/h), tacrine (8 mg/kg/h), or saline, 3–5 weeks after unilateral lesion of the NBM with ibotenic acid. Physostigmine and tacrine dose‐dependently increased blood flow in most cortical and subcortical regions compared to the control group. However, physostigmine caused smaller blood flow increases in several areas, mostly cortical, of the lesioned compared to the intact hemisphere. The converse was observed with tacrine. A facilitated circulatory response appeared in cortical areas deafferented from the NBM, especially in the frontal cortex. These results provide evidence for distinct NBM‐dependent components of the cortical cerebrovascular effects of physostigmine and tacrine. They suggest the involvement of different cellular postsynaptic targets of the NBM. The physostigmine‐type effects could involve direct projections onto an inhibitory cortical interneuron supersensitized by deafferentation. This arrangement may explain why physostigmine and perhaps other cholinergic agonists are unable to specifically compensate for a deficit in NBM functioning. The tacrine‐type effects presumably involve projections to the mi‐crovasculature, including perivascular astrocytes. The neurovascular junction would be sensitized by deafferentation from the NBM. Our data suggest that the regulatory mechanisms of blood flow originating in the NBM might constitute a target of neurodegenerative processes of Alzheimer's disease.
    Type of Medium: Online Resource
    ISSN: 0077-8923 , 1749-6632
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2000
    detail.hit.zdb_id: 2834079-6
    detail.hit.zdb_id: 211003-9
    detail.hit.zdb_id: 2071584-5
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...