GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Vol. 340, No. 6128 ( 2013-04-05)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 340, No. 6128 ( 2013-04-05)
    Abstract: We used a combined optogenetic-electrophysiological strategy to determine the functional identity of entorhinal cells with output to the place-cell population in the hippocampus. Channelrhodopsin-2 (ChR2) was expressed selectively in the hippocampus-targeting subset of entorhinal projection neurons by infusing retrogradely transportable ChR2-coding recombinant adeno-associated virus in the hippocampus. Virally transduced ChR2-expressing cells were identified in medial entorhinal cortex as cells that fired at fixed minimal latencies in response to local flashes of light. A large number of responsive cells were grid cells, but short-latency firing was also induced in border cells and head-direction cells, as well as cells with irregular or nonspatial firing correlates, which suggests that place fields may be generated by convergence of signals from a broad spectrum of entorhinal functional cell types.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 52 ( 2014-12-30), p. 18428-18435
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 52 ( 2014-12-30), p. 18428-18435
    Abstract: The contribution of hippocampal circuits to high-capacity episodic memory is often attributed to the large number of orthogonal activity patterns that may be stored in these networks. Evidence for high-capacity storage in the hippocampus is missing, however. When animals are tested in pairs of environments, different combinations of place cells are recruited, consistent with the notion of independent representations. However, the extent to which representations remain independent across larger numbers of environments has not been determined. To investigate whether spatial firing patterns recur when animals are exposed to multiple environments, we tested rats in 11 recording boxes, each in a different room, allowing for 55 comparisons of place maps in each animal. In each environment, activity was recorded from neuronal ensembles in hippocampal area CA3, with an average of 30 active cells per animal. Representations were highly correlated between repeated tests in the same room but remained orthogonal across all combinations of different rooms, with minimal overlap in the active cell samples from each environment. A low proportion of cells had activity in many rooms but the firing locations of these cells were completely uncorrelated. Taken together, the results suggest that the number of independent spatial representations stored in hippocampal area CA3 is large, with minimal recurrence of spatial firing patterns across environments.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...