GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 351, No. 6269 ( 2016-01-08), p. 173-176
    Abstract: Amyloid-like protein aggregation is associated with neurodegeneration and other pathologies. The nature of the toxic aggregate species and their mechanism of action remain elusive. Here, we analyzed the compartment specificity of aggregate toxicity using artificial β-sheet proteins, as well as fragments of mutant huntingtin and TAR DNA binding protein–43 (TDP-43). Aggregation in the cytoplasm interfered with nucleocytoplasmic protein and RNA transport. In contrast, the same proteins did not inhibit transport when forming inclusions in the nucleus at or around the nucleolus. Protein aggregation in the cytoplasm, but not the nucleus, caused the sequestration and mislocalization of proteins containing disordered and low-complexity sequences, including multiple factors of the nuclear import and export machinery. Thus, impairment of nucleocytoplasmic transport may contribute to the cellular pathology of various aggregate deposition diseases.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, Springer Science and Business Media LLC, Vol. 592, No. 7854 ( 2021-04-15), p. 450-456
    Abstract: Hepatocellular carcinoma (HCC) can have viral or non-viral causes 1–5 . Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need 6,7 . Here we report the progressive accumulation of exhausted, unconventionally activated CD8 + PD1 + T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8 + PD1 + T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH–HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8 + PD1 + CXCR6 + , TOX + , and TNF + T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8 + T cells or TNF neutralization, suggesting that CD8 + T cells help to induce NASH–HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8 + PD1 + T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH–HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 11 ( 2007-03-13), p. 4425-4430
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 11 ( 2007-03-13), p. 4425-4430
    Abstract: Coatomer, the coat protein of coat protein complex (COP)I-vesicles, is a soluble protein complex made up of seven subunits, α-, β-, β′-, γ-, δ-, ε-, and ζ-COP. Higher eukaryotes have two paralogous versions of the γ- and ζ- subunits, termed γ1- and γ2-COP and ζ1- and ζ2-COP. Different combinations of these subunits are known to exist within coatomer complexes, and γ1/ζ1-, γ1/ζ2-, and γ2/ζ1-COP represent the major coatomer populations in mammals. The role of COPI vesicles in the early secretory pathway is the subject of considerable debate. To help to resolve this discussion, we used quantitative immunoelectron microscopy and found that significant localization differences for COPI-isoforms do exist, with a preference for γ1ζ1- and γ1ζ2-coatomer in the early Golgi apparatus and γ2ζ1-coatomer in the late Golgi apparatus. These differences suggest distinct functions for coatomer isoforms in a manner similar to clathrin/adaptor vesicles, where different adaptor proteins serve particular transport routes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Vol. 340, No. 6131 ( 2013-04-26), p. 475-478
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 340, No. 6131 ( 2013-04-26), p. 475-478
    Abstract: Protein secretion allows communication of distant cells in an organism and controls a broad range of physiological functions. We describe a quantitative, high-resolution mass spectrometric workflow to detect and quantify proteins that are released from immune cells upon receptor ligation. We quantified the time-resolved release of 775 proteins, including 52 annotated cytokines from only 150,000 primary Toll-like receptor 4–activated macrophages per condition. Achieving low picogram sensitivity, we detected secreted proteins whose abundance increased by a factor of more than 10,000 upon stimulation. Secretome to transcriptome comparisons revealed the transcriptionally decoupled release of lysosomal proteins. From genetic models, we defined secretory profiles that depended on distinct intracellular signaling adaptors and showed that secretion of many proinflammatory proteins is safeguarded by redundant mechanisms, whereas signaling adaptor synergy promoted the release of anti-inflammatory proteins.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 29 ( 2010-07-20), p. 13046-13050
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 29 ( 2010-07-20), p. 13046-13050
    Abstract: ALS is a fatal motor neuron disease of adult onset. Neuroinflammation contributes to ALS disease progression; however, the inflammatory trigger remains unclear. We report that ALS–linked mutant superoxide dismutase 1 (SOD1) activates caspase-1 and IL-1β in microglia. Cytoplasmic accumulation of mutant SOD1 was sensed by an ASC containing inflammasome and antagonized by autophagy, limiting caspase-1–mediated inflammation. Notably, mutant SOD1 induced IL-1β correlated with amyloid-like misfolding and was independent of dismutase activity. Deficiency in caspase-1 or IL-1β or treatment with recombinant IL-1 receptor antagonist (IL-1RA) extended the lifespan of G93A- SOD1 transgenic mice and attenuated inflammatory pathology. These findings identify microglial IL-1β as a causative event of neuroinflammation and suggest IL-1 as a potential therapeutic target in ALS.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 526, No. 7573 ( 2015-10), p. 443-447
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...