GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2010
    In:  Science Vol. 329, No. 5997 ( 2010-09-10), p. 1330-1333
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 329, No. 5997 ( 2010-09-10), p. 1330-1333
    Abstract: Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide–emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO 2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO 2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO 2 -emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2010
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 47 ( 2022-11-22)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 47 ( 2022-11-22)
    Abstract: Climate change necessitates a global effort to reduce greenhouse gas emissions while adapting to increased climate risks. This broader climate transition will involve large-scale global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, all of which will result in CO 2 emissions from energy and materials use. Yet, the magnitude of the emissions embedded in these interventions remains unconstrained, opening the potential for underaccounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO 2 emissions embedded in the broader climate transition. For a gradual decarbonization pathway limiting warming to 2 °C, selected adaptation-related interventions will emit ∼1.3 GtCO 2 through 2100, while emissions from energy used to deploy renewable capacity are much larger at ∼95 GtCO 2 . Together, these emissions are equivalent to over 2 y of current global emissions and 8.3% of the remaining carbon budget for 2 °C. Total embedded transition emissions are reduced by ∼80% to 21.2 GtCO 2 under a rapid pathway limiting warming to 1.5 °C. However, they roughly double to 185 GtCO 2 under a delayed pathway consistent with current policies (2.7 °C warming by 2100), mainly because a slower transition relies more on fossil fuel energy. Our results provide a holistic assessment of carbon emissions from the transition itself and suggest that these emissions can be minimized through more ambitious energy decarbonization. We argue that the emissions from mitigation, but likely much less so from adaptation, are of sufficient magnitude to merit greater consideration in climate science and policy.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 38 ( 2009-09-22), p. 16129-16134
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 38 ( 2009-09-22), p. 16129-16134
    Abstract: Avoiding “dangerous anthropogenic interference with the climate system” requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO 2 ) emissions will exceed specified long-term global mean temperature targets for “dangerous anthropogenic interference,” taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 °C above preindustrial levels with a probability of at least 0.66, cumulative CO 2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 °C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO 2 emissions are 170 PgC (range, −220 to 700 PgC). Furthermore, these estimates of cumulative CO 2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 376, No. 6600 ( 2022-06-24), p. 1404-1409
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 376, No. 6600 ( 2022-06-24), p. 1404-1409
    Abstract: Human activities have caused global temperatures to increase by 1.25°C, and the current emissions trajectory suggests that we will exceed 1.5°C in less than 10 years. Though the growth rate of global carbon dioxide emissions has slowed and many countries have strengthened their emissions targets, current midcentury net zero goals are insufficient to limit global warming to 1.5°C above preindustrial temperatures. The primary barriers to the achievement of a 1.5°C-compatible pathway are not geophysical but rather reflect inertia in our political and technological systems. Both political and corporate leadership are needed to overcome this inertia, supported by increased societal recognition of the need for system-level and individual lifestyle changes. The available evidence does not yet indicate that the world has seriously committed to achieving the 1.5°C goal.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Vol. 340, No. 6131 ( 2013-04-26), p. 438-439
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 340, No. 6131 ( 2013-04-26), p. 438-439
    Abstract: Understanding how decreases in CO 2 emissions would affect global temperatures has been hampered in recent years by confusion regarding issues of committed warming and irreversibility. The notion that there will be additional future warming or “warming in the pipeline” if the atmospheric concentrations of carbon dioxide were to remain fixed at current levels ( 1 ) has been misinterpreted to mean that the rate of increase in Earth's global temperature is inevitable, regardless of how much or how quickly emissions decrease ( 2 – 4 ). Further misunderstanding may stem from recent studies showing that the warming that has already occurred as a result of past anthropogenic carbon dioxide increases is irreversible on a time scale of at least 1000 years ( 5 , 6 ). But irreversibility of past changes does not mean that further warming is unavoidable.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Nature Vol. 459, No. 7248 ( 2009-6), p. 829-832
    In: Nature, Springer Science and Business Media LLC, Vol. 459, No. 7248 ( 2009-6), p. 829-832
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 24 ( 2007-06-12), p. 9949-9954
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 24 ( 2007-06-12), p. 9949-9954
    Abstract: Geoengineering (the intentional modification of Earth's climate) has been proposed as a means of reducing CO 2 -induced climate warming while greenhouse gas emissions continue. Most proposals involve managing incoming solar radiation such that future greenhouse gas forcing is counteracted by reduced solar forcing. In this study, we assess the transient climate response to geoengineering under a business-as-usual CO 2 emissions scenario by using an intermediate-complexity global climate model that includes an interactive carbon cycle. We find that the climate system responds quickly to artificially reduced insolation; hence, there may be little cost to delaying the deployment of geoengineering strategies until such a time as “dangerous” climate change is imminent. Spatial temperature patterns in the geoengineered simulation are comparable with preindustrial temperatures, although this is not true for precipitation. Carbon sinks in the model increase in response to geoengineering. Because geoengineering acts to mask climate warming, there is a direct CO 2 -driven increase in carbon uptake without an offsetting temperature-driven suppression of carbon sinks. However, this strengthening of carbon sinks, combined with the potential for rapid climate adjustment to changes in solar forcing, leads to serious consequences should geoengineering fail or be stopped abruptly. Such a scenario could lead to very rapid climate change, with warming rates up to 20 times greater than present-day rates. This warming rebound would be larger and more sustained should climate sensitivity prove to be higher than expected. Thus, employing geoengineering schemes with continued carbon emissions could lead to severe risks for the global climate system.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 607, No. 7920 ( 2022-07-28), p. 653-656
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2014
    In:  Nature Vol. 514, No. 7523 ( 2014-10), p. 434-434
    In: Nature, Springer Science and Business Media LLC, Vol. 514, No. 7523 ( 2014-10), p. 434-434
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...