GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 348, No. 6239 ( 2015-06-05), p. 1160-1163
    Abstract: Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina–heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2018
    In:  Science Vol. 360, No. 6384 ( 2018-04-06)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 360, No. 6384 ( 2018-04-06)
    Abstract: Structurally and genetically, human herpesviruses are among the largest and most complex of viruses. Using cryo–electron microscopy (cryo-EM) with an optimized image reconstruction strategy, we report the herpes simplex virus type 2 (HSV-2) capsid structure at 3.1 angstroms, which is built up of about 3000 proteins organized into three types of hexons (central, peripentonal, and edge), pentons, and triplexes. Both hexons and pentons contain the major capsid protein, VP5; hexons also contain a small capsid protein, VP26; and triplexes comprise VP23 and VP19C. Acting as core organizers, VP5 proteins form extensive intermolecular networks, involving multiple disulfide bonds (about 1500 in total) and noncovalent interactions, with VP26 proteins and triplexes that underpin capsid stability and assembly. Conformational adaptations of these proteins induced by their microenvironments lead to 46 different conformers that assemble into a massive quasisymmetric shell, exemplifying the structural and functional complexity of HSV.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 366, No. 6469 ( 2019-11-29), p. 1107-1110
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 366, No. 6469 ( 2019-11-29), p. 1107-1110
    Abstract: Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp 2 -carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 39 ( 2022-09-27)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 39 ( 2022-09-27)
    Abstract: Single-molecule electrochemical science has advanced over the past decades and now extends well beyond molecular imaging, to molecular electronics functions such as rectification and amplification. Rectification is conceptually the simplest but has involved mostly challenging chemical synthesis of asymmetric molecular structures or asymmetric materials and geometry of the two enclosing electrodes. Here we propose an experimental and theoretical strategy for building and tuning in situ (in operando) rectification in two symmetric molecular structures in electrochemical environment. The molecules were designed to conduct electronically via either their lowest unoccupied molecular orbital (LUMO; electron transfer) or highest occupied molecular orbital (HOMO; “hole transfer”). We used a bipotentiostat to control separately the electrochemical potential of the tip and substrate electrodes of an electrochemical scanning tunneling microscope (EC-STM), which leads to independent energy alignment of the STM tip, the molecule, and the STM substrate. By creating an asymmetric energy alignment, we observed single-molecule rectification of each molecule within a voltage range of ±0.5 V. By varying both the dominating charge transporting LUMO or HOMO energy and the electrolyte concentration, we achieved tuning of the polarity as well as the amplitude of the rectification. We have extended an earlier proposed theory that predicts electrolyte-controlled rectification to rationalize all the observed in situ rectification features and found excellent agreement between theory and experiments. Our study thus offers a way toward building controllable single-molecule rectifying devices without involving asymmetric molecular structures.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...