GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 16 ( 2003-08-05), p. 9128-9133
    Abstract: Late blight, caused by the oomycete pathogen Phytophthora infestans , is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans . Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil–nucleotide binding site–Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 33 ( 2012-08-14), p. 13434-13439
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 33 ( 2012-08-14), p. 13434-13439
    Abstract: In vivo recycling of nitrate (NO 3 − ) and nitrite (NO 2 − ) is an important alternative pathway for the generation of nitric oxide (NO) and maintenance of systemic nitrate–nitrite–NO balance. More than 25% of the circulating NO 3 − is actively removed and secreted by salivary glands. Oral commensal bacteria convert salivary NO 3 − to NO 2 − , which enters circulation and leads to NO generation. The transporters for NO 3 − in salivary glands have not yet been identified. Here we report that sialin ( SLC17A 5 ), mutations in which cause Salla disease and infantile sialic acid storage disorder (ISSD), functions as an electrogenic 2NO 3 − /H + cotransporter in the plasma membrane of salivary gland acinar cells. We have identified an extracellular pH-dependent anion current that is carried by NO 3 − or sialic acid (SA), but not by Br − , and is accompanied by intracellular acidification. Both responses were reduced by knockdown of sialin expression and increased by the plasma membrane-targeted sialin mutant (L22A-L23A). Fibroblasts from patients with ISSD displayed reduced SA- and NO 3 − -induced currents compared with healthy controls. Furthermore, expression of disease-associated sialin mutants in fibroblasts and salivary gland cells suppressed the H + -dependent NO 3 − conductance. Importantly, adenovirus-dependent expression of the sialinH183R mutant in vivo in pig salivary glands decreased NO 3 − secretion in saliva after intake of a NO 3 − -rich diet. Taken together, these data demonstrate that sialin mediates nitrate influx into salivary gland and other cell types. We suggest that the 2NO 3 − /H + transport function of sialin in salivary glands can contribute significantly to clearance of serum nitrate, as well as nitrate recycling and physiological nitrite-NO homeostasis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...