GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 33 ( 2013-08-13), p. 13672-13677
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 33 ( 2013-08-13), p. 13672-13677
    Abstract: Since the days of Elton, population cycles have challenged ecologists and resource managers. Although the underlying mechanisms remain debated, theory holds that both density-dependent and density-independent processes shape the dynamics. One striking example is the large-scale fluctuations of sardine and anchovy observed across the major upwelling areas of the world. Despite a long history of research, the causes of these fluctuations remain unresolved and heavily debated, with significant implications for fisheries management. We here model the underlying causes of these fluctuations, using the California Current Ecosystem as a case study, and show that the dynamics, accurately reproduced since A.D. 1661 onward, are explained by interacting density-dependent processes (i.e., through species-specific life-history traits) and climate forcing. Furthermore, we demonstrate how fishing modifies the dynamics and show that the sardine collapse of the 1950s was largely unavoidable given poor recruitment conditions. Our approach provides unique insight into the origin of sardine–anchovy fluctuations and a knowledge base for sustainable fisheries management in the California Current Ecosystem and beyond.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 21 ( 2012-05-22), p. 8185-8189
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 21 ( 2012-05-22), p. 8185-8189
    Abstract: Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi-isolated ecosystem. At varying population size, cod expand/contract their distribution range and invade/retreat from the neighboring Gulf of Riga, thereby affecting the local prey population of herring and, indirectly, zooplankton and phytoplankton via top-down control. The Gulf of Riga can be considered for cod a “true sink” habitat, where in the absence of immigration from the source areas of the central Baltic Sea the cod population goes extinct due to the absence of suitable spawning grounds. Our results add a metaecosystem perspective to the ongoing intense scientific debate on the key role of top predators in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 34 ( 2009-08-25), p. 14722-14727
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 34 ( 2009-08-25), p. 14722-14727
    Abstract: Worldwide a number of fish stocks have collapsed because of overfishing and climate-induced ecosystem changes. Developing ecosystem-based fisheries management (EBFM) to prevent these catastrophic events in the future requires ecological models incorporating both internal food-web dynamics and external drivers such as fishing and climate. Using a stochastic food-web model for a large marine ecosystem (i.e., the Baltic Sea) hosting a commercially important cod stock, we were able to reconstruct the history of the stock. Moreover we demonstrate that in hindsight the collapse could only have been avoidable by adapting fishing pressure to environmental conditions and food-web interactions. The modeling approach presented here represents a significant advance for EBFM, the application of which is important for sustainable resource management in the future.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...