GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 510, No. 7506 ( 2014-6), p. 522-524
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 366, No. 6467 ( 2019-11-15)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 366, No. 6467 ( 2019-11-15)
    Abstract: The transition from peri-implantation to gastrulation in mammals entails the specification and organization of the lineage progenitors into a body plan. Technical and ethical challenges have limited understanding of the cellular and molecular mechanisms that underlie this transition. We established a culture system that enabled the development of cynomolgus monkey embryos in vitro for up to 20 days. Cultured embryos underwent key primate developmental stages, including lineage segregation, bilaminar disc formation, amniotic and yolk sac cavitation, and primordial germ cell–like cell (PGCLC) differentiation. Single-cell RNA-sequencing analysis revealed development trajectories of primitive endoderm, trophectoderm, epiblast lineages, and PGCLCs. Analysis of single-cell chromatin accessibility identified transcription factors specifying each cell type. Our results reveal critical developmental events and complex molecular mechanisms underlying nonhuman primate embryogenesis in the early postimplantation period, with possible relevance to human development.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 22 ( 2006-05-30), p. 8552-8557
    Abstract: In animals, liver and white adipose are the main sites for the de novo fatty acid synthesis. Deletion of fatty acid synthase or acetyl-CoA carboxylase (ACC) 1 in mice resulted in embryonic lethality, indicating that the de novo fatty acid synthesis is essential for embryonic development. To understand the importance of de novo fatty acid synthesis and the role of ACC1-produced malonyl-CoA in adult mouse tissues, we generated liver-specific ACC1 knockout (LACC1KO) mice. LACC1KO mice have no obvious health problem under normal feeding conditions. Total ACC activity and malonyl-CoA levels were ≈70–75% lower in liver of LACC1KO mice compared with that of the WT mice. In addition, the livers of LACC1KO mice accumulated 40–70% less triglycerides. Unexpectedly, when fed fat-free diet for 10 days, there was significant up-regulation of PPARγ and several enzymes in the lipogenic pathway in the liver of LACC1KO mice compared with the WT mice. Despite the significant up-regulation of the lipogenic enzymes, including a 〉 2-fold increase in fatty acid synthase mRNA, protein, and activity, there was significant decrease in the de novo fatty acid synthesis and triglyceride accumulation in the liver. However, there were no significant changes in blood glucose and fasting ketone body levels. Hence, reducing cytosolic malonyl-CoA and, therefore, the de novo fatty acid synthesis in the liver, does not affect fatty acid oxidation and glucose homeostasis under lipogenic conditions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 3 ( 2012-01-17), p. 751-753
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 3 ( 2012-01-17), p. 751-753
    Abstract: Oxygen is in many ways a unique element: It is the only known diatomic molecular magnet, and it exhibits an unusual O 8 cluster in its high-pressure solid phase. Pressure-induced molecular dissociation as one of the fundamental problems in physical sciences has been reported from theoretical or experimental studies of diatomic solids H 2 , N 2 , F 2 , Cl 2 , Br 2 , and I 2 but remains elusive for molecular oxygen. We report here the prediction of the dissociation of molecular oxygen into a polymeric spiral chain O 4 structure (space group I 4 1 / acd , θ -O 4 ) above 1.92-TPa pressure using the particle-swarm search method. The θ -O 4 phase has a similar structure as the high-pressure phase III of sulfur. The molecular bonding in the insulating ε -O 8 phase or the isostructural superconducting ζ -O 8 phase remains remarkably stable over a large pressure range of 0.008–1.92 TPa. The pressure-induced softening of a transverse acoustic phonon mode at the zone boundary V point of O 8 phase might be the ultimate driving force for the formation of θ -O 4 . Stabilization of θ -O 4 turns oxygen from a superconductor into an insulator by opening a wide band gap (approximately 5.9 eV) that originates from the sp 3 -like hybridized orbitals of oxygen and the localization of valence electrons.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 1 ( 1997-01-07), p. 73-78
    Abstract: The interaction between CD4 and major histocompatibility complex (MHC) class II proteins is critical for the activation of CD4 + T cells, which are involved in transplantation reactions and a number of autoimmune diseases. In this study we have identified a CD4 surface pocket as a functional epitope implicated in CD4–MHC class II interaction and T-cell activation. A computer-based strategy has been used to screen ≈150,000 non-peptidic organic compounds in a molecular data base and to identify a group of compounds as ligands of the proposed CD4 surface pocket. These small organic compounds have been shown to specifically block stable CD4–MHC class II binding, and exhibit significant inhibition of immune responses in animal models of autoimmune disease and allograft transplant rejection, suggesting their potential as novel immunosuppressants. This structure-based computer screening approach may have general implications for studying many immunoglobulin-like structures and interactions that share similar structural features. Furthermore, the results from this study have demonstrated that the rational design of small non-peptidic inhibitors of large protein–protein interfaces may indeed be an achievable goal.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 19 ( 2019-05-07), p. 9586-9591
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 19 ( 2019-05-07), p. 9586-9591
    Abstract: Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy. However, to apply it to in vivo brain imaging, we must address the challenges of 3D imaging in an optically heterogeneous tissue that is constantly in motion. We optimized image acquisition and reconstruction to combat sample motion and applied adaptive optics to correcting sample-induced optical aberrations in super-resolution structured illumination microscopy (SIM) in vivo. We imaged the brains of live zebrafish larvae and mice and observed the dynamics of dendrites and dendritic spines at nanoscale resolution.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...