GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 27 ( 2008-07-08), p. 9145-9150
    Abstract: DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction can decipher many sequences in parallel. We report here a DNA sequencing method that is a hybrid between the Sanger dideoxynucleotide terminating reaction and SBS. In this approach, four nucleotides, modified as reversible terminators by capping the 3′-OH with a small reversible moiety so that they are still recognized by DNA polymerase as substrates, are combined with four cleavable fluorescent dideoxynucleotides to perform SBS. The ratio of the two sets of nucleotides is adjusted as the extension cycles proceed. Sequences are determined by the unique fluorescence emission of each fluorophore on the DNA products terminated by ddNTPs. On removing the 3′-OH capping group from the DNA products generated by incorporating the 3′- O -modified dNTPs and the fluorophore from the DNA products terminated with the ddNTPs, the polymerase reaction reinitiates to continue the sequence determination. By using an azidomethyl group as a chemically reversible capping moiety in the 3′- O -modified dNTPs, and an azido-based cleavable linker to attach the fluorophores to the ddNTPs, we synthesized four 3′- O -azidomethyl-dNTPs and four ddNTP-azidolinker-fluorophores for the hybrid SBS. After sequence determination by fluorescence imaging, the 3′- O -azidomethyl group and the fluorophore attached to the DNA extension product via the azidolinker are efficiently removed by using Tris(2-carboxyethyl)phosphine in aqueous solution that is compatible with DNA. Various DNA templates, including those with homopolymer regions, were accurately sequenced with a read length of 〉 30 bases by using this hybrid SBS method on a chip and a four-color fluorescence scanner.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 42 ( 2007-10-16), p. 16462-16467
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 42 ( 2007-10-16), p. 16462-16467
    Abstract: Pyrosequencing is a method used to sequence DNA by detecting the pyrophosphate (PPi) group that is generated when a nucleotide is incorporated into the growing DNA strand in polymerase reaction. However, this method has an inherent difficulty in accurately deciphering the homopolymeric regions of the DNA templates. We report here the development of a method to solve this problem by using nucleotide reversible terminators. These nucleotide analogues are modified with a reversible chemical moiety capping the 3′-OH group to temporarily terminate the polymerase reaction. In this way, only one nucleotide is incorporated into the growing DNA strand even in homopolymeric regions. After detection of the PPi for sequence determination, the 3′-OH of the primer extension products is regenerated through different deprotection methods. Using an allyl or a 2-nitrobenzyl group as the reversible moiety to cap the 3′-OH of the four nucleotides, we have synthesized two sets of 3′- O -modified nucleotides, 3′- O -allyl-dNTPs and 3′- O -(2-nitrobenzyl)-dNTPs as reversible terminators for pyrosequencing. The capping moiety on the 3′-OH of the DNA extension product is efficiently removed after PPi detection by either a chemical method or photolysis. To sequence DNA, templates containing homopolymeric regions are immobilized on Sepharose beads, and then extension–signal detection–deprotection cycles are conducted by using the nucleotide reversible terminators on the DNA beads to unambiguously decipher the sequence of DNA templates. Our results establish that this reversible-terminator-pyrosequencing approach can be potentially developed into a powerful methodology to accurately determine DNA sequences.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 3 ( 2019-01-15), p. 845-853
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 3 ( 2019-01-15), p. 845-853
    Abstract: Bacterium Thermus thermophilus Argonaute (Ago; Tt Ago) is a prokaryotic Ago (pAgo) that acts as the host defense against the uptake and propagation of foreign DNA by catalyzing the DNA cleavage reaction. The Tt Ago active site consists of a plugged-in glutamate finger with two arginine residues (R545 and R486) located symmetrically around it. An interesting challenge is to understand how they can collaboratively facilitate enzymatic catalysis. In Kluyveromyces polysporus Ago, a eukaryotic Ago, the evolutionarily symmetrical residues are arginine and histidine, both of which function to stabilize the plugged-in catalytic tetrad conformation. Surprisingly, our simulation results indicated that, in Tt Ago, only R545 is involved in the cleavage reaction by serving as a critical structural anchor to stabilize the catalytic tetrad Asp-Glu-Asp-Asp that is completed by the insertion of the glutamate finger, whereas R486 is not involved in target cleavage. The Tt Ago-mediated target DNA cleavage occurs in a substrate-assisted mechanism, in which the pro-Rp (Rp, a tetrahedral phosphorus center with “R-type” chirality) oxygen of scissile phosphate acts as a general base to activate the nucleophilic water. Our unexpected theoretical findings on distinct roles played by R545 and R486 in Tt Ago catalysis have been validated by single-point site-mutagenesis experiments, wherein the target cleavage is abolished for all mutants of R545. In sharp contrast, the cleavage activity is maintained for all mutants of R486. Our work provides mechanistic insights on the catalytic specificity of Ago proteins and could facilitate the design of new gene-editing tools in the long term.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...