GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 34 ( 2018-08-21)
    Abstract: Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6 −/− ), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (T FH ) cell differentiation and T cell metabolism. In vitro, DUSP6 −/− CD4 + T FH cells produced elevated IL-21. In vivo, T FH cells were increased in DUSP6 −/− mice and in transgenic OTII-DUSP6 −/− mice at steady state. After immunization, DUSP6 −/− and OTII-DUSP6 −/− mice generated more T FH cells and produced more antigen-specific IgG2 than controls. Activated DUSP6 −/− T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6 −/− T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6 −/− T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6 −/− T FH cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains T FH cell differentiation via inhibiting IL-21 production.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 49 ( 2022-12-06)
    Abstract: The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1–G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6–G8, showing high expression of HOXA / B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX -primitive (G7) , HOX -mixed (G8), and HOX -committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 14 ( 2019-04-02), p. 6975-6984
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 14 ( 2019-04-02), p. 6975-6984
    Abstract: Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M–high gliomas with gene-dosage–dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high–CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 5 ( 2019-01-29), p. 1714-1722
    Abstract: Ocular corticosteroids are commonly used clinically. Unfortunately, their administration frequently leads to ocular hypertension, i.e., elevated intraocular pressure (IOP), which, in turn, can progress to a form of glaucoma known as steroid-induced glaucoma. The pathophysiology of this condition is poorly understood yet shares similarities with the most common form of glaucoma. Using nanotechnology, we created a mouse model of corticosteroid-induced ocular hypertension. This model functionally and morphologically resembles human ocular hypertension, having titratable, robust, and sustained IOPs caused by increased resistance to aqueous humor outflow. Using this model, we then interrogated the biomechanical properties of the trabecular meshwork (TM), including the inner wall of Schlemm’s canal (SC), tissues known to strongly influence IOP and to be altered in other forms of glaucoma. Specifically, using spectral domain optical coherence tomography, we observed that SC in corticosteroid-treated mice was more resistant to collapse at elevated IOPs, reflecting increased TM stiffness determined by inverse finite element modeling. Our noninvasive approach to monitoring TM stiffness in vivo is applicable to other forms of glaucoma and has significant potential to monitor TM function and thus positively affect the clinical care of glaucoma, the leading cause of irreversible blindness worldwide.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 41 ( 2020-10-13), p. 25352-25359
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 41 ( 2020-10-13), p. 25352-25359
    Abstract: Electronic skins are essential for real-time health monitoring and tactile perception in robots. Although the use of soft elastomers and microstructures have improved the sensitivity and pressure-sensing range of tactile sensors, the intrinsic viscoelasticity of soft polymeric materials remains a long-standing challenge resulting in cyclic hysteresis. This causes sensor data variations between contact events that negatively impact the accuracy and reliability. Here, we introduce the Tactile Resistive Annularly Cracked E-Skin (TRACE) sensor to address the inherent trade-off between sensitivity and hysteresis in tactile sensors when using soft materials. We discovered that piezoresistive sensors made using an array of three-dimensional (3D) metallic annular cracks on polymeric microstructures possess high sensitivities ( 〉 10 7 Ω ⋅ kPa −1 ), low hysteresis (2.99 ± 1.37%) over a wide pressure range (0–20 kPa), and fast response (400 Hz). We demonstrate that TRACE sensors can accurately detect and measure the pulse wave velocity (PWV) when skin mounted. Moreover, we show that these tactile sensors when arrayed enabled fast reliable one-touch surface texture classification with neuromorphic encoding and deep learning algorithms.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 16 ( 2017-04-18), p. 4219-4224
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 16 ( 2017-04-18), p. 4219-4224
    Abstract: The etiology of the highly myopic condition has been unclear for decades. We investigated the genetic contributions to early-onset high myopia (EOHM), which is defined as having a refraction of less than or equal to −6 diopters before the age of 6, when children are less likely to be exposed to high educational pressures. Trios (two nonmyopic parents and one child) were examined to uncover pathogenic mutations using whole-exome sequencing. We identified parent-transmitted biallelic mutations or de novo mutations in as-yet-unknown or reported genes in 16 probands. Interestingly, an increased rate of de novo mutations was identified in the EOHM patients. Among the newly identified candidate genes, a BSG mutation was identified in one EOHM proband. Expanded screening of 1,040 patients found an additional four mutations in the same gene. Then, we generated Bsg mutant mice to further elucidate the functional impact of this gene and observed typical myopic phenotypes, including an elongated axial length. Using a trio-based exonic screening study in EOHM, we deciphered a prominent role for de novo mutations in EOHM patients without myopic parents. The discovery of a disease gene, BSG , provides insights into myopic development and its etiology, which expands our current understanding of high myopia and might be useful for future treatment and prevention.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2023
    In:  Science Vol. 380, No. 6652 ( 2023-06-30), p. 1390-1396
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6652 ( 2023-06-30), p. 1390-1396
    Abstract: Observations of the bright gamma-ray burst GRB 221009A at tera–electron volt energies show that it contained a very narrow jet.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 20 ( 2019-05-14), p. 9820-9824
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 20 ( 2019-05-14), p. 9820-9824
    Abstract: Middle to Late Pleistocene human evolution in East Asia has remained controversial regarding the extent of morphological continuity through archaic humans and to modern humans. Newly found ∼300,000-y-old human remains from Hualongdong (HLD), China, including a largely complete skull (HLD 6), share East Asian Middle Pleistocene (MPl) human traits of a low vault with a frontal keel (but no parietal sagittal keel or angular torus), a low and wide nasal aperture, a pronounced supraorbital torus (especially medially), a nonlevel nasal floor, and small or absent third molars. It lacks a malar incisure but has a large superior medial pterygoid tubercle. HLD 6 also exhibits a relatively flat superior face, a more vertical mandibular symphysis, a pronounced mental trigone, and simple occlusal morphology, foreshadowing modern human morphology. The HLD human fossils thus variably resemble other later MPl East Asian remains, but add to the overall variation in the sample. Their configurations, with those of other Middle and early Late Pleistocene East Asian remains, support archaic human regional continuity and provide a background to the subsequent archaic-to-modern human transition in the region.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...